%I #16 Nov 22 2020 12:24:47
%S 1,1,1,3,3,1,1,5,10,10,5,1,1,7,21,35,35,21,7,1,1,9,36,84,126,126,84,
%T 36,9,1,1,11,55,165,330,462,462,330,165,55,11,1,1,13,78,286,715,1287,
%U 1716,1716,1287,715,286,78,13,1,1,15,105,455,1365,3003,5005
%N Odd-numbered rows of Pascal's triangle.
%H Eduardo H. M. Brietzke, <a href="http://www.fq.math.ca/Papers1/44-2/quarteduardobrietzke02_2006.pdf">Generalization of an identity of Andrews</a>, Fibonacci Quart. 44 (2006), no. 2, 166-171.
%F G.f.: (1+y)/(1-x*(1+y)^2). - _Vladimir Kruchinin_, Nov 22 2020
%t Take[Table[Binomial[n,m],{n,0,20},{m,0,n}],{2,-1,2}]//Flatten (* _Harvey P. Dale_, Dec 10 2018 *)
%o (Haskell)
%o a034871 n = a034871_list !! n
%o a034871_list = concat $ map ([1,1] ^) [1,3..]
%o instance Num a => Num [a] where
%o fromInteger k = [fromInteger k]
%o (p:ps) + (q:qs) = p + q : ps + qs
%o ps + qs = ps ++ qs
%o (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
%o _ * _ = []
%o -- _Reinhard Zumkeller_, Apr 02 2011
%Y Cf. A007318, A034870.
%K nonn,tabf,easy
%O 0,4
%A _N. J. A. Sloane_.