login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034864 a(5) = 5, a(6) = 1170, for n >= 7, a(n) = n!*(4*n^3 - 30*n^2 + 40*n + 3)/24. 1
5, 1170, 38850, 757680, 12836880, 212133600, 3554258400, 61372080000, 1100366467200, 20555914579200, 400638734496000, 8148554878464000, 172878910364160000, 3823017399032832000, 88035572875041792000, 2108819186504110080000, 52489556713659985920000 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 5..445

J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.

FORMULA

a(n) = A034863(n), n > 6. - R. J. Mathar, Feb 26 2008

E.g.f.: x^5*(1 + 35*x + 35*x^2 - 59*x^3 + 12*x^5)/(24*(1-x)^4). - G. C. Greubel, Feb 16 2018

MAPLE

[5, 1170, seq(factorial(n)*(4*n^3-30*n^2+40*n+3)/24, n=7..22)]; # Muniru A Asiru, Feb 17 2018

MATHEMATICA

Join[{5, 1170}, Table[n!*(4*n^3-30*n^2+40*n+3)/24, {n, 7, 50}]] (* or *) Drop[With[{nn = 30}, CoefficientList[Series[(x^5*(1+35*x+35*x^2-59*x^3 + 12*x^5))/(24*(1-x)^4), {x, 0, nn}], x]*Range[0, nn]!], 5] (* G. C. Greubel, Feb 16 2018 *)

PROG

(PARI) x='x+O('x^30); Vec(serlaplace(x^5*(1+35*x+35*x^2-59*x^3 +12*x^5)/( 24*(1-x)^4))) \\ G. C. Greubel, Feb 16 2018

(MAGMA) [5, 1170] cat [Factorial(n)*(4*n^3-30*n^2+40*n+3)/24: n in [7..30]]; // G. C. Greubel, Feb 16 2018

(GAP) A034864:=Concatenation([5, 1170], List([7..22], n->Factorial(n)*(4*n^3-30*n^2+40*n+3)/24)); # Muniru A Asiru, Feb 17 2018

CROSSREFS

Sequence in context: A306141 A317374 A189249 * A157642 A234811 A069642

Adjacent sequences:  A034861 A034862 A034863 * A034865 A034866 A034867

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 18:37 EST 2019. Contains 329865 sequences. (Running on oeis4.)