This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034850 Triangular array formed by taking every other term of Pascal's triangle. 2
 1, 1, 2, 1, 3, 1, 6, 1, 5, 10, 1, 6, 20, 6, 1, 21, 35, 7, 1, 28, 70, 28, 1, 9, 84, 126, 36, 1, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 1, 66, 495, 924, 495, 66, 1, 13, 286, 1287, 1716, 715, 78, 1, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened D. Dumont and J. Zeng, PolynĂ´mes d'Euler et les fractions continues de Stieltjes-Rogers, preprint 1996. D. Dumont and J. Zeng, PolynĂ´mes d'Euler et les fractions continues de Stieltjes-Rogers, Ramanujan J. 2 (1998) 3, 387-410. FORMULA a(n) = A007318(2n) if both are regarded as integer sequences. - Michael Somos, Feb 11 2004 EXAMPLE Triangle begins:   1;   1;   2;   1,  3;   1,  6,  1;   5, 10,  1;   6, 20,  6;   1, 21, 35,  7; MATHEMATICA Table[If[k < 0 || k > (Floor[n/4] + Floor[(n + 1)/4]), 0, Binomial[n, 2*k + Mod[Floor[(n + 1)/2], 2]]], {n, 0, 20}, {k, 0, (Floor[n/4] + Floor[(n + 1)/4])}] // Flatten (* G. C. Greubel, Feb 23 2018 *) PROG (PARI) {T(n, k) = if( k<0 || k>n\4 + (n+1)\4, 0, binomial(n, 2*k + (n+1)\2%2))}; /* Michael Somos, Feb 11 2004 */ CROSSREFS Cf. A007318, A034839. Sequence in context: A022458 A084419 A119606 * A220377 A145969 A140352 Adjacent sequences:  A034847 A034848 A034849 * A034851 A034852 A034853 KEYWORD nonn,easy,tabf AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 17 19:15 EST 2018. Contains 317276 sequences. (Running on oeis4.)