login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034841 (n^2)! / (n!)^n. 11
1, 1, 6, 1680, 63063000, 623360743125120, 2670177736637149247308800, 7363615666157189603982585462030336000, 18165723931630806756964027928179555634194028454000000, 53130688706387569792052442448845648519471103327391407016237760000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The number of arrangements of 1,2,...,n*n in an n X n matrix such that each row is increasing. - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 12 2001

a(n) == 0 mod (n!). In fact (n^2)! == 0 mod (n!)^n by elementary combinatorics, a better result is (n^2)! == 0 ((mod(n!)^(n+1)). - Amarnath Murthy, Jul 13 2005

a(n) is also the number of lattice paths from {n}^n to {0}^n using steps that decrement one component by 1. a(2) = 6: [(2,2), (1,2), (0,2), (0,1), (0,0)], [(2,2), (1,2), (1,1), (0,1), (0,0)], [(2,2), (1,2), (1,1), (1,0), (0,0)], [(2,2), (2,1), (1,1), (0,1), (0,0)], [(2,2), (2,1), (1,1), (1,0), (0,0)], [(2,2), (2,1), (2,0), (1,0), (0,0)]. - Alois P. Heinz, May 06 2013

Given n^2 distinguishable balls and n distinguishable urns, a(n) = the number of ways to place n balls in the i-th urn for all 1 <= i <= n, where n = n_1 + n_2 + ... + n_n. - Ross La Haye, Dec 28 2013

LINKS

Alois P. Heinz and Tilman Piesk, Table of n, a(n) for n = 0..26 (first 20 terms from Alois P. Heinz)

FORMULA

Using a higher order version of Stirling's formula (the "standard" formula appears in A000142) we have the asymptotic expression: a(n) ~ sqrt(2*Pi) * e^(-1/12) * n^(n^2 - n/2 + 1) / (2*Pi)^(n/2). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 13 2001

MAPLE

a:= n-> (n^2)! / (n!)^n:

seq(a(n), n=0..10);  # Alois P. Heinz, Jul 24 2012

PROG

(PARI) a(n) = (n^2)! / (n!)^n; \\ Michel Marcus, Oct 28 2014

(MAGMA) [Factorial(n^2) / Factorial(n)^n: n in [0..10]]; // Vincenzo Librandi, Oct 29 2014

CROSSREFS

Cf. A000142, A039622, A229050, A229050.

Diagonal of A089759, A187783. - Alois P. Heinz, Jan 23 2013

Sequence in context: A216934 A160226 A209609 * A149187 A250393 A221627

Adjacent sequences:  A034838 A034839 A034840 * A034842 A034843 A034844

KEYWORD

nonn

AUTHOR

Erich Friedman

EXTENSIONS

a(0)=1 prepended by Tilman Piesk, Oct 28 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 22:30 EST 2014. Contains 250438 sequences.