%I #34 Sep 08 2022 08:44:52
%S 1,14,294,8232,288120,12101040,592950960,33205253760,2091930986880,
%T 146435169081600,11275508019283200,947142673619788800,
%U 86189983299400780800,8446618363341276518400,886894928150834034432000,99332231952893411856384000,11820535602394316010909696000
%N One seventh of sept-factorial numbers.
%H G. C. Greubel, <a href="/A034834/b034834.txt">Table of n, a(n) for n = 1..335</a>
%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>.
%F 7*a(n) = (7*n)(!^7) = Product_{j=1..n} 7*j = 7^n*n!.
%F E.g.f.: x/(1-7*x).
%F a(n) = A051188(n)/7.
%F From _Amiram Eldar_, Jan 08 2022: (Start)
%F Sum_{n>=1} 1/a(n) = 7*(exp(1/7)-1).
%F Sum_{n>=1} (-1)^(n+1)/a(n) = 7*(1-exp(-1/7)). (End)
%t Table[7^(n-1)*n!, {n,1,30}] (* or *) Drop[With[{nn = 50},CoefficientList[ Series[x/(1-7*x), {x, 0, nn}], x]*Range[0, nn]!], 1] (* _G. C. Greubel_, Feb 22 2018 *)
%o (PARI) my(x='x+O('x^30)); Vec(serlaplace(x/(1-7*x))) \\ _G. C. Greubel_, Feb 22 2018
%o (Magma) [7^(n-1)*Factorial(n): n in [1..30]]; // _G. C. Greubel_, Feb 22 2018
%Y Cf. A045754, A034829, A034830, A034831, A034832, A034833, A051188.
%K easy,nonn
%O 1,2
%A _Wolfdieter Lang_
%E More terms from _G. C. Greubel_, Feb 22 2018