login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034823 Number of n-node rooted trees of height at most 6. 5
1, 1, 1, 2, 4, 9, 20, 48, 114, 278, 676, 1653, 4027, 9816, 23843, 57833, 139908, 337856, 814127, 1958524, 4703322, 11278027, 27003707, 64571463, 154207616, 367841733, 876450881, 2086098057, 4960230005, 11782852600, 27963874395, 66307010599 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

N. J. A. Sloane, Table of n, a(n) for n=0..200

N. J. A. Sloane, Transforms

Index entries for sequences related to rooted trees

FORMULA

Take Euler transform of A001385 and shift right. (Christian G. Bower).

MAPLE

For Maple program see link in A000235.

with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: shr:= proc(p) n->`if`(n=0, 1, p(n-1)) end: b[0]:= etr(n->1): for j from 1 to 4 do b[j]:= etr(shr(b[j-1])) od: a:= shr(b[4]): seq(a(n), n=0..31); # Alois P. Heinz, Sep 08 2008

MATHEMATICA

Prepend[Nest[CoefficientList[Series[Product[1/(1-x^i)^#[[i]], {i, 1, Length[#]}], {x, 0, 40}], x]&, {1}, 6], 1] (* Geoffrey Critzer, Aug 01 2013 *)

CROSSREFS

See A001383 for details.

Sequence in context: A036624 A226907 A186952 * A036625 A003019 A036626

Adjacent sequences: A034820 A034821 A034822 * A034824 A034825 A034826

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 11:02 EST 2022. Contains 358493 sequences. (Running on oeis4.)