OFFSET
1,4
FORMULA
a(n)= 2*Trib(2*q) if r=0; Trib(2*q-1)+Trib(2*q+1) if r=1; Trib(2*q)+Trib(2*q+1) if r=2 where q=[(n-1)/3], r=n-1 (mod 3) and Trib denotes the tribonacci sequence (A000073) with Trib(-1)=1. G.f.: (-x^7+2*x^6-2*x^5+2*x^4-2*x^3-x)/(x^9+x^6+3*x^3-1). Recurrence: a(n)=3*a(n-3)+a(n-6)+a(n-9), n >= 10.
EXAMPLE
a(10)=14 because {0, 5, 14, 31}->{5, 9, 17, 31}->{4, 8, 14, 26}->{4, 6, 12, 22}->{2, 6, 10, 18}->{4, 4, 8, 16}->{0, 4, 8, 12}->{4, 4, 4, 12}->{0, 0, 8, 8}->{0, 8, 0, 8}->{8, 8, 8, 8} ('b'=14 in the first 4-tuple and there is no quadruple with a+b<=c<=31 and 10 steps).
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Better description, more terms, formula, etc. from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 24 2001
STATUS
approved