login
Triangle of Fibonomial coefficients (k=3).
2

%I #19 Dec 01 2019 05:31:15

%S 1,1,1,1,4,1,1,17,17,1,1,72,306,72,1,1,305,5490,5490,305,1,1,1292,

%T 98515,417240,98515,1292,1,1,5473,1767779,31716035,31716035,1767779,

%U 5473,1,1,23184,31721508,2410834608,10212563270,2410834608,31721508,23184,1

%N Triangle of Fibonomial coefficients (k=3).

%D A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 88.

%H G. C. Greubel, <a href="/A034802/b034802.txt">Rows n = 0..75 of triangle, flattened</a>

%H C. Pita, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Pita/pita12.html">On s-Fibonomials</a>, J. Int. Seq. 14 (2011) # 11.3.7.

%F T(n, k) = Product_{j=0..k-1} Fibonacci(3*(n-j))/Product_{j=1..k} Fibonacci(3*j).

%F Fibonomial coefficients formed from sequence F_4k [ 3 21 144 987 ... ].

%t F[n_, k_, q_]:= Product[Fibonacci[q*(n-j+1)]/Fibonacci[q*j], {j,k}];

%t Table[F[n, k, 3], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 13 2019 *)

%o (PARI) F(n,k,q) = f=fibonacci; prod(j=1,k, f(q*(n-j+1))/f(q*j)); \\ _G. C. Greubel_, Nov 13 2019

%o (Sage)

%o def F(n,k,q):

%o if (n==0 and k==0): return 1

%o else: return product(fibonacci(q*(n-j+1))/fibonacci(q*j) for j in (1..k))

%o [[F(n,k,3) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Nov 13 2019

%o (GAP)

%o F:= function(n,k,q)

%o if n=0 and k=0 then return 1;

%o else return Product([1..k], j-> Fibonacci(q*(n-j+1))/Fibonacci(q*j));

%o fi;

%o end;

%o Flat(List([0..10], n-> List([0..n], k-> F(n,k,3) ))); # _G. C. Greubel_, Nov 13 2019

%Y Cf. A010048.

%K nonn,tabl

%O 0,5

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_, Feb 09 2000

%E Terms of 8th row corrected by _Georg Fischer_, Dec 01 2019