The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034801 Triangle of Fibonomial coefficients (k=2). 8
 1, 1, 1, 1, 3, 1, 1, 8, 8, 1, 1, 21, 56, 21, 1, 1, 55, 385, 385, 55, 1, 1, 144, 2640, 6930, 2640, 144, 1, 1, 377, 18096, 124410, 124410, 18096, 377, 1, 1, 987, 124033, 2232594, 5847270, 2232594, 124033, 987, 1, 1, 2584, 850136, 40062659, 274715376, 274715376, 40062659, 850136, 2584, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 REFERENCES A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 88. LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened C. Pita, On s-Fibonomials, J. Int. Seq. 14 (2011) # 11.3.7. C. J. Pita Ruiz Velasco, Sums of Products of s-Fibonacci Polynomial Sequences, J. Int. Seq. 14 (2011) # 11.7.6. FORMULA Fibonomial coefficients formed from sequence F_3k [ 2, 8, 34, ... ]. T(n, k) = Product_{j=0..k-1} Fibonacci(2*(n-j)) / Product_{j=1..k} Fibonacci(2*j). EXAMPLE Triangle begins as:   1;   1,   1;   1,   3,      1;   1,   8,      8,       1;   1,  21,     56,      21,       1;   1,  55,    385,     385,      55,       1;   1, 144,   2640,    6930,    2640,     144,      1;   1, 377,  18096,  124410,  124410,   18096,    377,   1;   1, 987, 124033, 2232594, 5847270, 2232594, 124033, 987, 1; MAPLE A034801 := proc(n, k)     mul(combinat[fibonacci](2*n-2*j), j=0..k-1) /     mul(combinat[fibonacci](2*j), j=1..k) ; end proc: # R. J. Mathar, Sep 02 2017 MATHEMATICA F[n_, k_, q_]:= Product[Fibonacci[q*(n-j+1)]/Fibonacci[q*j], {j, k}]; Table[F[n, k, 2], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 13 2019 *) PROG (PARI) F(n, k, q) = f=fibonacci; prod(j=1, k, f(q*(n-j+1))/f(q*j)); \\ G. C. Greubel, Nov 13 2019 (Sage) def F(n, k, q):     if (n==0 and k==0): return 1     else: return product(fibonacci(q*(n-j+1))/fibonacci(q*j) for j in (1..k)) [[F(n, k, 2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 13 2019 (GAP) F:= function(n, k, q)     if n=0 and k=0 then return 1;     else return Product([1..k], j-> Fibonacci(q*(n-j+1))/Fibonacci(q*j));     fi;   end; Flat(List([0..10], n-> List([0..n], k-> F(n, k, 2) ))); # G. C. Greubel, Nov 13 2019 CROSSREFS Cf. A010048. Sequence in context: A238688 A174117 A157210 * A331890 A102435 A340882 Adjacent sequences:  A034798 A034799 A034800 * A034802 A034803 A034804 KEYWORD nonn,tabl AUTHOR EXTENSIONS More terms from James A. Sellers, Feb 09 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 5 05:47 EDT 2022. Contains 355087 sequences. (Running on oeis4.)