|
|
A034785
|
|
a(n) = 2^(n-th prime).
|
|
33
|
|
|
4, 8, 32, 128, 2048, 8192, 131072, 524288, 8388608, 536870912, 2147483648, 137438953472, 2199023255552, 8796093022208, 140737488355328, 9007199254740992, 576460752303423488, 2305843009213693952
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
These are the "outputs" in Conway's PRIMEGAME (see A007542). - Alonso del Arte, Jan 03 2011
Multiplicative encoding of the n-th prime. - Daniel Forgues, Feb 26 2017
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Index to divisibility sequences
|
|
FORMULA
|
From Amiram Eldar, Aug 11 2020: (Start)
a(n) = 2^A000040(n).
Sum_{n>=1} 1/a(n) = A051006. (End)
|
|
EXAMPLE
|
a(4) = 128 because the fourth prime number is 7 and 2^7 = 128.
|
|
MATHEMATICA
|
2^Prime@Range@40 (* Vladimir Joseph Stephan Orlovsky, Apr 11 2011 *)
|
|
PROG
|
(Haskell)
a034785 = (2 ^) . a000040
-- Reinhard Zumkeller, Feb 07 2015, Jan 24 2012
(PARI) a(n)=1<<prime(n) \\ Charles R Greathouse IV, Apr 07 2012
(MAGMA) [2^p: p in PrimesUpTo(100)]; // Vincenzo Librandi, Apr 29 2014
|
|
CROSSREFS
|
Cf. A000040, A000430, A051006, A073718 (2^(n-th composite)), A074736.
Sequence in context: A327493 A103970 A227295 * A247938 A072868 A075398
Adjacent sequences: A034782 A034783 A034784 * A034786 A034787 A034788
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Asher Auel (asher.auel(AT)reed.edu)
|
|
EXTENSIONS
|
More terms from James A. Sellers, Feb 04 2000
|
|
STATUS
|
approved
|
|
|
|