login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034723 a(n) = n-th sextic factorial number divided by 3. 8
1, 9, 135, 2835, 76545, 2525985, 98513415, 4433103675, 226088287425, 12887032383225, 811883040143175, 56019929769879075, 4201494732740930625, 340321073352015380625, 29607933381625338114375 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..345

FORMULA

3*a(n) = (6*n-3)(!^6) = Product_{j=1..n} (6*j-3) = 3^n*A001147(n) = 3^n*(2*n)!/(2^n*n!).

E.g.f.: (-1 + (1-6*x)^(-1/2))/3.

a(n) = 2*(3/2)^(n-1)*(n+1)!*C(n), where C(n) = A000108(n). - G. C. Greubel, Nov 11 2019

MAPLE

seq(3^(n-1)*(2*n)!/(2^n*n!), n=1..20); # G. C. Greubel, Nov 11 2019

MATHEMATICA

Table[3^(n-1)*(2*n)!/(2^n*n!), {n, 20}] (* G. C. Greubel, Nov 11 2019 *)

PROG

(PARI) a(n) = prod(j=1, n, 6*j-3)/3; \\ Michel Marcus, Mar 13 2019

(MAGMA) F:=Factorial; [3^(n-1)*F(2*n)/(2^n*F(n)): n in [1..20]]; // G. C. Greubel, Nov 11 2019

(Sage) f=factorial; [3^(n-1)*f(2*n)/(2^n*f(n)) for n in (1..20)] # G. C. Greubel, Nov 11 2019

(GAP) F:=Factorial;; List([1..20], n-> 3^(n-1)*F(2*n)/(2^n*F(n))); # G. C. Greubel, Nov 11 2019

CROSSREFS

Cf. A001147, A008542, A034689.

Sequence in context: A254282 A235339 A306848 * A188685 A052137 A003376

Adjacent sequences:  A034720 A034721 A034722 * A034724 A034725 A034726

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 20:00 EST 2019. Contains 330000 sequences. (Running on oeis4.)