login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034715 Dirichlet convolution of triangular numbers with themselves. 4

%I

%S 1,6,12,29,30,78,56,132,126,200,132,402,182,378,420,588,306,864,380,

%T 1050,798,902,552,1920,875,1248,1296,2002,870,2940,992,2592,1914,2108,

%U 2100,4635,1406,2622,2652,5080,1722,5628,1892,4818,4860,3818,2256,8856

%N Dirichlet convolution of triangular numbers with themselves.

%H Bruno Berselli, <a href="/A034715/b034715.txt">Table of n, a(n) for n = 1..1000</a>

%F G.f.: Sum_{k>=1} (k*(k + 1)/2)*x^k/(1 - x^k)^3. - _Ilya Gutkovskiy_, Oct 24 2018

%F From _Vaclav Kotesovec_, Feb 05 2019: (Start)

%F Dirichlet g.f.: ((zeta(s-1) + zeta(s-2))/2)^2.

%F Sum_{k=1..n} a(k) ~ n^3*(log(n)/12 + (6*gamma - 1 + Pi^2)/36), where gamma is the Euler-Mascheroni constant A001620. (End)

%t Table[n/4*Sum[(n+d)*(d+1)/d, {d, Divisors[n]}], {n, 1, 50}] (* _Vaclav Kotesovec_, Feb 05 2019 *)

%o (MAGMA) A000217:=func<i | i*(i+1)/2>; [&+[A000217(d)*A000217(n div d): d in Divisors(n)]: n in [1..50]]; // Bruno Berselli, Feb 11 2014

%Y Cf. A000217.

%K nonn

%O 1,2

%A _Erich Friedman_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 8 10:20 EST 2021. Contains 341948 sequences. (Running on oeis4.)