login
Prime numbers using only the curved digits 0, 2, 3, 5, 6, 8 and 9.
6

%I #20 Nov 26 2014 20:16:15

%S 2,3,5,23,29,53,59,83,89,223,229,233,239,263,269,283,293,353,359,383,

%T 389,503,509,523,563,569,593,599,653,659,683,809,823,829,839,853,859,

%U 863,883,929,953,983,2003,2029,2039,2053,2063,2069,2083,2089,2099,2203

%N Prime numbers using only the curved digits 0, 2, 3, 5, 6, 8 and 9.

%C Intersection of A000040 and A028374. - _K. D. Bajpai_, Sep 07 2014

%H K. D. Bajpai, <a href="/A034470/b034470.txt">Table of n, a(n) for n = 1..10000</a>

%e From _K. D. Bajpai_, Sep 07 2014: (Start)

%e 29 is prime and is composed only of the curved digits 2 and 9.

%e 359 is prime and is composed only of the curved digits 3, 5 and 9.

%e (End)

%e 20235869 is the smallest instance using all curved digits. - _Michel Marcus_, Sep 07 2014

%p N:= 4: # to get all entries with at most N digits

%p S:= {0,2,3,5,6,8,9}:

%p T:= S:

%p for j from 2 to N do

%p T:= map(t -> seq(10*t+s,s=S),T);

%p od:

%p select(isprime,T);

%p # In Maple 11 and earlier, uncomment the next line:

%p # sort(convert(%,list)); # _Robert Israel_, Sep 07 2014

%t Select[Range[2222], PrimeQ[#] && Union[Join[IntegerDigits[#], {0, 2, 3, 5, 6, 8, 9}]] == {0, 2, 3, 5, 6, 8, 9} &] (* RGWv *)

%t Select[Prime[Range[500]], Intersection[IntegerDigits[#], {1, 4, 7}] == {} &] (* _K. D. Bajpai_, Sep 07 2014 *)

%Y Cf. A028374, A072960, A079652.

%K base,nonn

%O 1,1

%A _Robert G. Wilson v_, Jan 24 2003