login
A034349
Number of binary [ n,8 ] codes without 0 columns.
7
0, 0, 0, 0, 0, 0, 0, 1, 8, 47, 277, 1775, 12616, 102445, 957357, 10174566, 119235347, 1482297912, 18884450721, 240477821389, 3012879828566, 36800049400028, 436068618826236, 5001537857507095, 55482177298724426, 595303034603214108, 6181562837200509792, 62170512250565592346
OFFSET
1,9
COMMENTS
To find the g.f., modify the Sage program below (cf. function f). It is very complicated to write it here. - Petros Hadjicostas, Oct 07 2019
LINKS
Discrete algorithms at the University of Bayreuth, Symmetrica.
Harald Fripertinger, Isometry Classes of Codes.
H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Here a(n) = S_{n,8,2}.]
Petr Lisonek, Combinatorial families enumerated by quasi-polynomials, J. Combin. Theory Ser. A 114(4) (2007), 619-630. [See Section 5.]
David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
Wikipedia, Cycle index.
PROG
(Sage) # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
def A034253col(k, length):
G1 = PSL(k, GF(2))
G2 = PSL(k-1, GF(2))
D1 = G1.cycle_index()
D2 = G2.cycle_index()
f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
f = f1 - f2
return f.taylor(x, 0, length).list()
# For instance the Taylor expansion for column k = 8 (current sequence) gives
print(A034253col(8, 30)) # Petros Hadjicostas, Oct 07 2019
CROSSREFS
Column k=8 of A034253 and first differences of A034362.
Sequence in context: A014524 A098891 A054488 * A296797 A024108 A247726
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Petros Hadjicostas, Oct 07 2019
STATUS
approved