login
Number of binary [ n,5 ] codes without 0 columns.
7

%I #25 Oct 06 2019 01:53:33

%S 0,0,0,0,1,5,17,54,163,465,1283,3480,9256,24282,62812,160106,401824,

%T 992033,2406329,5730955,13393760,30709772,69079030,152473837,

%U 330344629,702839150,1469214076,3019246455,6103105779,12142291541,23790590387,45932253637,87434850942,164188881007

%N Number of binary [ n,5 ] codes without 0 columns.

%H Discrete algorithms at the University of Bayreuth, <a href="http://www.algorithm.uni-bayreuth.de/en/research/SYMMETRICA/">Symmetrica</a>.

%H Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry Classes of Codes</a>.

%H Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables_4.html">Snk2: Number of the isometry classes of all binary (n,k)-codes without zero-columns</a>. [See column k=5.]

%H H. Fripertinger and A. Kerber, <a href="https://doi.org/10.1007/3-540-60114-7_15">Isometry classes of indecomposable linear codes</a>. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Here a(n) = S_{n,5,2}.]

%H Petros Hadjicostas, <a href="/A034253/a034253_1.txt">Generating function for a(n)</a>.

%H Petr Lisonek, <a href="https://doi.org/10.1016/j.jcta.2006.06.013">Combinatorial families enumerated by quasi-polynomials</a>, J. Combin. Theory Ser. A 114(4) (2007), 619-630. [See Section 5.]

%H David Slepian, <a href="https://archive.org/details/bstj39-5-1219">Some further theory of group codes</a>, Bell System Tech. J. 39(5) (1960), 1219-1252.

%H David Slepian, <a href="https://doi.org/10.1002/j.1538-7305.1960.tb03958.x">Some further theory of group codes</a>, Bell System Tech. J. 39(5) (1960), 1219-1252.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Cycle_index">Cycle index</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Projective_linear_group">Projective linear group</a>.

%o (Sage) # Fripertinger's method to find the g.f. of column k >= 2 (for small k):

%o def A034253col(k, length):

%o G1 = PSL(k, GF(2))

%o G2 = PSL(k-1, GF(2))

%o D1 = G1.cycle_index()

%o D2 = G2.cycle_index()

%o f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)

%o f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)

%o f = f1 - f2

%o return f.taylor(x, 0, length).list()

%o # For instance the Taylor expansion for column k = 5 gives a(n):

%o print(A034253col(5, 30)) # _Petros Hadjicostas_, Oct 04 2019

%Y Cf. A034254, A034344, A034345, A034347, A034348, A034349, A253186.

%Y Column k=5 of A034253 and first differences of A034359.

%K nonn

%O 1,6

%A _N. J. A. Sloane_

%E More terms from _Petros Hadjicostas_, Oct 04 2019