

A034254


Triangle read by rows giving T(n,k) = number of inequivalent indecomposable linear [ n,k ] binary codes without 0 columns (n >= 2, 1 <= k <= n).


27



1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 4, 10, 10, 4, 1, 1, 5, 18, 28, 18, 5, 1, 1, 7, 31, 71, 71, 31, 7, 1, 1, 8, 51, 165, 250, 165, 51, 8, 1, 1, 10, 79, 361, 809, 809, 361, 79, 10, 1, 1, 12, 121, 754, 2484, 3759, 2484, 754, 121, 12
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,8


REFERENCES

H. Fripertinger and A. Kerber, in AAECC11, Lect. Notes Comp. Sci. 948 (1995), 194204.
D. Slepian, Some further theory of group codes. Bell System Tech. J. 39 1960 12191252.


LINKS

Table of n, a(n) for n=1..65.
H. Fripertinger, Isometry Classes of Codes
Index entries for sequences related to binary linear codes


EXAMPLE

1; 1,1; 1,1,1; 1,2,2,1; 1,3,5,3,1; 1,4,10,10,4,1; ...


CROSSREFS

Cf. A076836 (row sums), A034253.
Sequence in context: A054106 A132044 A034327 * A157103 A135966 A060351
Adjacent sequences: A034251 A034252 A034253 * A034255 A034256 A034257


KEYWORD

tabl,nonn


AUTHOR

N. J. A. Sloane.


STATUS

approved



