%I
%S 1,1,3,3,6,3,3,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
%T 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
%U 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
%N Number of binary codes of length 3 with n words.
%D H. Fripertinger, Enumeration, construction and random generation of block codes, Designs, Codes, Crypt., 14 (1998), 213-219.
%H H. Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry Classes of Codes</a>
%F a(n)=[C(2*n,n) mod 2]+{C[(n+1)^2,n+3] mod 2}+3*[C(n^2,n+2) mod 2]+3*{C[(n+11)^4,n+13] mod 2}+6*{C[(n+10)^4,n+12] mod 2}+3*{C[(n+9)^4,n+11] mod 2}+3*{C[(n+8)^4,n+10] mod 2}+{C[(n+7)^4,n+9] mod 2}+{C[(n+6)^4,n+8] mod 2} - _Paolo P. Lava_, Jan 07 2008
%Y Cf. A034189, A034190, A034191, A034192, A034193, A034194, A034195, A034196, A034197.
%Y A row of A039754.
%K nonn
%O 0,3
%A _N. J. A. Sloane_.
|