

A034149


Number of partitions of n into distinct parts from [ 1, 19 ].


0



1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 63, 74, 86, 99, 115, 132, 151, 173, 197, 223, 253, 285, 320, 360, 402, 448, 499, 553, 611, 675, 743, 815, 894, 977, 1065, 1161, 1260, 1365, 1477
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

The number of different ways to run up a staircase with 19 steps, taking steps of odd sizes (or taking steps of distinct sizes), where the order is not relevant and there is no other restriction on the number or the size of each step taken is the coefficient of x^19.  Mohammad K. Azarian, Aug 22 2010


REFERENCES

Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 1217. Zentralblatt MATH, Zbl 1071.05501.  Mohammad K. Azarian, Aug 22 2010
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 2428, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).  Mohammad K. Azarian, Aug 22 2010


LINKS

Table of n, a(n) for n=0..48.


FORMULA

Expansion of (1+x)(1+x^2)(1+x^3)...(1+x^19).


CROSSREFS

Sequence in context: A034147 A034148 A288000 * A034150 A288001 A034321
Adjacent sequences: A034146 A034147 A034148 * A034150 A034151 A034152


KEYWORD

nonn


AUTHOR

N. J. A. Sloane


STATUS

approved



