The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034090 Numbers n such that sum of proper divisors of n exceeds that of all smaller numbers. 14
 1, 2, 4, 6, 8, 10, 12, 18, 20, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, 120, 144, 168, 180, 216, 240, 288, 300, 336, 360, 420, 480, 504, 540, 600, 660, 720, 840, 960, 1008, 1080, 1200, 1260, 1440, 1560, 1680, 1980, 2100, 2160, 2340, 2400, 2520, 2880, 3120, 3240 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The highly abundant numbers A002093 are a subsequence since if sigma(n) - n > sigma(m) - m for all m < n then sigma(n) > sigma(m). - Charles R Greathouse IV, Sep 13 2016 LINKS T. D. Noe and Donovan Johnson, Table of n, a(n) for n = 1..1000 (first 372 terms from T. D. Noe) EXAMPLE Contribution from William A. Tedeschi, Aug 19 2010: (Start) -- 12: 1+2+3+4+6 = 16 13: 1 = 1 14: 1+2+7 = 10 15: 1+3+5 = 9 16: 1+2+4+8 = 16 17: 1 = 1 -- 18: 1+2+3+6+9 = 21 As 12 had the previous (earliest) highest it is listed, then since 18 has the new highest, it is listed. (End) MATHEMATICA A={}; m=-1; For[ i=1, i<10000, i++, t=Apply[ Plus, Divisors[ i ] ]-i; If[ t>m, m=t; AppendTo[ A, i ] ] ]; A PROG (PARI) r=0; for(n=1, 1e6, t=sigma(n)-n; if(t>r, r=t; print1(n", "))) \\ Charles R Greathouse IV, Sep 13 2016 CROSSREFS Supersequence of A002093. Cf. A001065, A034091, A034287, A034288. Sequence in context: A100180 A258137 A101814 * A146344 A162763 A113242 Adjacent sequences:  A034087 A034088 A034089 * A034091 A034092 A034093 KEYWORD nonn,nice AUTHOR EXTENSIONS More terms from Erich Friedman STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 12:33 EST 2020. Contains 332136 sequences. (Running on oeis4.)