login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034000 One half of triple factorial numbers. 21
1, 5, 40, 440, 6160, 104720, 2094400, 48171200, 1252451200, 36321084800, 1162274713600, 40679614976000, 1545825369088000, 63378840132608000, 2788668965834752000, 131067441394233344000, 6553372069711667200000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Contribution from Gary W. Adamson, May 17 2010: (Start)

Preface the series with a 1, then the next term = (1, 4, 7, 10,...) dot

(1, 1, 5, 40,...). E.g. a(5) = 6160 = (1, 4, 7, 10, 13) dot (1, 1, 5, 40, 440) = (1 + 4 + 35 + 400 + 5720). (End)

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..375

J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014

FORMULA

a(n) = A007661(3n-1)/2 = A008544(n)/2.

2*a(n+1) = (3*n+2)!!! = product(3*j+2, j=0..n), n >= 0.

E.g.f. (-1 + (1-3*x)^(-2/3))/2.

a(n) = (3*n-1)!/(2*3^(n-1)*(n-1)!*A007559(n)).

a(n) ~ 3/2*2^(1/2)*Pi^(1/2)*Gamma(2/3)^-1*n^(7/6)*3^n*e^-n*n^n*{1 + 23/36*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001

a(n) = 3^n*(n+2/3)!/(2/3)!, with offset 0. - Paul Barry, Sep 04 2005

a(n) + (1-3*n)*a(n-1) = 0. - R. J. Mathar, Dec 03 2012

MAPLE

A034000:=n->`if`(n=1, 1, (3*n-1)*A034000(n-1)); seq(A034000(n), n=1..20); # G. C. Greubel, Aug 15 2019

MATHEMATICA

nxt[{n_, a_}]:={n+1, (3(n+1)-1)*a}; Transpose[NestList[nxt, {1, 1}, 20]][[2]] (* Harvey P. Dale, Aug 22 2015 *)

Table[3^(n-1)*Pochhammer[5/3, n-1], {n, 20}] (* G. C. Greubel, Aug 15 2019 *)

PROG

(PARI) m=20; v=concat([1], vector(m-1)); for(n=2, m, v[n]=(3*n-1)*v[n-1]); v \\ G. C. Greubel, Aug 15 2019

(MAGMA) [n le 1 select 1 else (3*n-1)*Self(n-1): n in [1..20]]; // G. C. Greubel, Aug 15 2019

(Sage)

def a(n):

    if n==1: return 1

    else: return (3*n-1)*a(n-1)

[a(n) for n in (1..20)] # G. C. Greubel, Aug 15 2019

(GAP) a:=[1];; for n in [2..20] do a[n]:=(3*n-1)*a[n-1]; od; a; # G. C. Greubel, Aug 15 2019

CROSSREFS

Cf. A007559, A034001, A025748, A034724.

Sequence in context: A258172 A304866 A202477 * A000359 A121886 A282190

Adjacent sequences:  A033997 A033998 A033999 * A034001 A034002 A034003

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 17:59 EST 2019. Contains 329960 sequences. (Running on oeis4.)