login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033820 Triangle read by rows: T(k,j) = ((2*j+1)/(k+1))*binomial(2*j,j)*binomial(2*k-2*j,k-j). 1
1, 1, 3, 2, 4, 10, 5, 9, 15, 35, 14, 24, 36, 56, 126, 42, 70, 100, 140, 210, 462, 132, 216, 300, 400, 540, 792, 1716, 429, 693, 945, 1225, 1575, 2079, 3003, 6435, 1430, 2288, 3080, 3920, 4900, 6160, 8008, 11440, 24310, 4862, 7722, 10296, 12936, 15876, 19404 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

f(n,k) = 2^{n-2(k-2)}sum(T(k-2,j)*binomial(n+2*(k-2-j),2*(k-2-j)),j=0..k-2) is the number of length n k-ary strings (k >= 2) which avoid a rising triple (pattern 123) or any other given 3-letter permutation pattern.

Row sums are the powers of 4. This is explained by a simple statistic on the 4^n lattice paths of length 2n formed from upsteps U=(1,1) and downsteps D=(1,-1). For such a path, define X = number of upsteps that lie above ground level (GL), the horizontal line through the initial vertex, and before the last vertex at GL. For UDDUUUUDDU for instance, the last vertex at GL follows the fourth step, and so X = 1. T(n,k) is the number of these paths with X=n-k. For example, T(2,1)=4 counts UDUU, UDDU, UDDD, DUUD because each has n-k=1 upsteps above GL and before the last vertex at GL. - David Callan, Nov 21 2011

LINKS

Table of n, a(n) for n=0..50.

Alexander Burstein, Enumeration of words with forbidden patterns, Ph.D. thesis, University of Pennsylvania, 1998.

Ira Gessel, Super ballot numbers, J. Symbolic Computation 14 (1992), 179-194.

Walter Shur, Two Game-Set Inequalities, J. Integer Seqs., Vol. 6, 2003.

FORMULA

T(k,0) = binomial(2*k, k)/(k+1), the k-th Catalan number; T(k,k) = binomial(2*(k+1),k+1)/2, half the (k+1)-st central binomial coefficient sum of entries in row k (over j) = 2^{2*(k-1)}

T(k,j) = sum(C(k-i)D(i), i=0..j), C(i) = binomial(2*i,i)/(i+1), D(i) = binomial(2*i,i).

G.f.: 2/(1-4*x*y+sqrt((1-4*x)*(1-4*x*y))). - Vladeta Jovovic, Dec 14 2003

EXAMPLE

{1},

{1, 3},

{2, 4, 10},

{5, 9, 15, 35},

{14, 24, 36, 56, 126},

{42, 70, 100, 140, 210, 462},

{132, 216, 300, 400, 540, 792, 1716},

...

CROSSREFS

Cf. A000108, A000984, A000302.

Essentially a reflected version of A078817.

Sequence in context: A083164 A094962 A084793 * A095259 A260596 A265353

Adjacent sequences:  A033817 A033818 A033819 * A033821 A033822 A033823

KEYWORD

nonn,tabl

AUTHOR

Alexander Burstein

EXTENSIONS

More terms from Vladeta Jovovic, Dec 10 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 18:55 EST 2019. Contains 329410 sequences. (Running on oeis4.)