login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033818 Convolution of natural numbers n >= 1 with Lucas numbers L(k) for k >= -2. 3
3, 5, 9, 14, 22, 34, 53, 83, 131, 208, 332, 532, 855, 1377, 2221, 3586, 5794, 9366, 15145, 24495, 39623, 64100, 103704, 167784, 271467, 439229, 710673, 1149878, 1860526, 3010378, 4870877, 7881227, 12752075, 20633272, 33385316, 54018556, 87403839, 141422361, 228826165, 370248490 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).

FORMULA

a(n) = L(1)*(F(n+1) - 1) + L(0)*F(n) - L(-1)*n, F(n): Fibonacci (A000045), L(n): Lucas (A000032) with L(-n) = (-1)^n*L(n).

G.f.: x*(3-4*x)/((1-x-x^2)*(1-x)^2).

a(n) = Lucas(n+1) + n - 1. - G. C. Greubel, Jun 01 2019

MATHEMATICA

LinearRecurrence[{3, -2, -1, 1}, {3, 5, 9, 14}, 50] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2011, modified by G. C. Greubel, Jun 01 2019 *)

Table[LucasL[n+1] +n-1, {n, 1, 50}] (* G. C. Greubel, Jun 01 2019 *)

PROG

(PARI) {a(n) = fibonacci(n+2) + fibonacci(n) + n-1}; \\ G. C. Greubel, Jun 01 2019

(MAGMA) [Lucas(n+1) +n-1: n in [1..50]]; // G. C. Greubel, Jun 01 2019

(Sage) [lucas_number2(n+1, 1, -1) +n-1 for n in (1..50)] # G. C. Greubel, Jun 01 2019

(GAP) List([1..50], n-> Lucas(1, -1, n+1)[2] +n-1) # G. C. Greubel, Jun 01 2019

CROSSREFS

Cf. A000032, A000045, A023537, A023548, A033811.

Sequence in context: A268345 A267047 A032801 * A320598 A227567 A120452

Adjacent sequences:  A033815 A033816 A033817 * A033819 A033820 A033821

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

EXTENSIONS

Terms a(31) onward added by G. C. Greubel, Jun 01 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)