%I #16 May 16 2023 06:57:34
%S 1,0,72,192,864,1152,3168,3456,10674,8448,18432,17856,42816,31104,
%T 61056,51072,118224,80640,146376,115776,258624,166656,291744,233856,
%U 492576,304128,534528,403200,819072,521856,874368,642816,1372914,814848,1334016,1008000
%N Theta series of lattice D3 tensor D3 (dimension 9, det. 4096, min. norm 4).
%C This theta series is an element of the space of modular forms on Gamma_1(32) with Kronecker character 8 in modulus 32, weight 9/2, and dimension 18. - _Andy Huchala_, May 16 2023
%H Andy Huchala, <a href="/A033693/b033693.txt">Table of n, a(n) for n = 0..10000</a>
%o (Magma)
%o prec := 30;
%o basis := [1,1,0,1,1,0,0,0,0,1,-1,0,1,-1,0,0,0,0,0,1,-1,0,1,-1,0,0,0,1,1,0,-1,-1,0,0,0,0,1,-1,0,-1,1,0,0,0,0,0,1,-1,0,-1,1,0,0,0,0,0,0,1,1,0,-1,-1,0,0,0,0,1,-1,0,-1,1,0,0,0,0,0,1,-1,0,-1,1];
%o S := Matrix(9,basis);
%o L := LatticeWithBasis(S);
%o T := ThetaSeriesModularForm(L);
%o Coefficients(PowerSeries(T,prec)); // _Andy Huchala_, May 16 2023
%K nonn
%O 0,3
%A _N. J. A. Sloane_.
%E a(21)-a(31) from _Sean A. Irvine_, Jul 13 2020
%E More terms from _Andy Huchala_, May 16 2023