OFFSET
0,2
COMMENTS
Sequence found by reading the line from 1, in the direction 1, 24,..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 13 2011
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = a(n-1) + 28*n - 5 for n>0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Oct 12 2019: (Start)
G.f.: (1 + 21*x + 6*x^2)/(1-x)^3.
E.g.f.: (1 + 23*x + 14*x^2)*exp(x). (End)
Sum 1/a(n) = -gamma/5 -2*log(2)/5 -psi(1/7)/5 = 1.0800940432405839438217..., gamma=A001620, psi(1/7) = -A354627. - R. J. Mathar, May 07 2024
MAPLE
seq((2*n+1)*(7*n+1), n=0..50); # G. C. Greubel, Oct 12 2019
MATHEMATICA
Table[(2*n+1)*(7*n+1), {n, 0, 50}] (* G. C. Greubel, Oct 12 2019 *)
LinearRecurrence[{3, -3, 1}, {1, 24, 75}, 50] (* Harvey P. Dale, Apr 19 2023 *)
PROG
(PARI) a(n)=(2*n+1)*(7*n+1) \\ Charles R Greathouse IV, Jun 17 2017
(Magma) [(2*n+1)*(7*n+1): n in [0..50]] # G. C. Greubel, Oct 12 2019
(Sage) [(2*n+1)*(7*n+1) for n in range(50)] # G. C. Greubel, Oct 12 2019
(GAP) List([0..50], n-> (2*n+1)*(7*n+1)); # G. C. Greubel, Oct 12 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved