login
A033544
Wiener number of n-hexagonal triangle.
4
0, 27, 210, 822, 2328, 5433, 11130, 20748, 36000, 59031, 92466, 139458, 203736, 289653, 402234, 547224, 731136, 961299, 1245906, 1594062, 2015832, 2522289, 3125562, 3838884, 4676640, 5654415, 6789042, 8098650, 9602712, 11322093, 13279098
OFFSET
0,2
COMMENTS
Named after the American chemist and physician Harry Wiener (1924-1988). - Amiram Eldar, Jun 13 2021
REFERENCES
Wai Chee Shiu, C. S. Tong and P. C. B. Lam, Wiener number of some polycyclic graphs, Graph Theory Notes of New York, Vol. 32, No. 2 (1997), pp. 10-15.
FORMULA
a(n) = (1/10)*n*(n+1)*(4*n^3+36*n^2+79*n+16).
G.f.: 3*x*(2*x^3-11*x^2+16*x+9)/(x-1)^6. [Colin Barker, Oct 30 2012]
MATHEMATICA
CoefficientList[Series[3 x (2 x^3 - 11 x^2 + 16 x + 9)/(x - 1)^6, {x, 0, 30}], x] (* Vincenzo Librandi, Oct 20 2013 *)
PROG
(Magma) [(1/10)*n*(n+1)*(4*n^3+36*n^2+79*n+16): n in [0..30]]; // Vincenzo Librandi, Oct 20 2013
CROSSREFS
Sequence in context: A216110 A216112 A183596 * A224874 A125111 A016767
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Oct 20 2013
STATUS
approved