login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033516 Number of matchings in graph C_{4} X P_{n}. 3
1, 7, 108, 1511, 21497, 305184, 4334009, 61545775, 873996300, 12411393231, 176250978417, 2502894414208, 35542954271729, 504736272807255, 7167628868280044, 101785638086283959, 1445431440583263081, 20526196904667164704, 291487197206091205801 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..800

J. L. Hock, R. B. McQuistan< The occupation statistics for indistinguishable dumbbells on a 2X2XN lattice space, J. Math. Phys 24 (7) (1983) 1859, Table 1.

Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.

Index entries for linear recurrences with constant coefficients, signature (14,6,-46,18,2,-1).

FORMULA

G.f.: -(x^4 -3*x^3 -4*x^2 +7*x -1) / (x^6 -2*x^5 -18*x^4 +46*x^3 -6*x^2 -14*x +1). - Alois P. Heinz, Dec 09 2013

MAPLE

seq(coeff(series((1-7*x+4*x^2+3*x^3-x^4)/(1-14*x-6*x^2+46*x^3-18*x^4 -2*x^5+x^6), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 26 2019

MATHEMATICA

LinearRecurrence[{14, 6, -46, 18, 2, -1}, {1, 7, 108, 1511, 21497, 305184}, 30] (* G. C. Greubel, Oct 26 2019 *)

PROG

(PARI) my(x='x+O('x^30)); Vec((1-7*x+4*x^2+3*x^3-x^4)/(1-14*x-6*x^2 +46*x^3-18*x^4-2*x^5+x^6)) \\ G. C. Greubel, Oct 26 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-7*x+4*x^2+3*x^3-x^4)/(1-14*x-6*x^2+46*x^3-18*x^4-2*x^5+x^6) )); // G. C. Greubel, Oct 26 2019

(Sage)

def A033516_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P( (1-7*x+4*x^2+3*x^3-x^4)/(1-14*x-6*x^2+46*x^3-18*x^4-2*x^5 +x^6) ).list()

A033516_list(30) # G. C. Greubel, Oct 26 2019

(GAP) a:=[1, 7, 108, 1511, 21497, 305184];; for n in [4..30] do a[n]:=14*a[n-1]+6*a[n-2]-46*a[n-3]+18*a[n-4]+2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Oct 26 2019

CROSSREFS

Row 4 of A287428.

Sequence in context: A202780 A297804 A218819 * A130629 A137648 A106977

Adjacent sequences:  A033513 A033514 A033515 * A033517 A033518 A033519

KEYWORD

nonn,easy

AUTHOR

Per H. Lundow

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 22:36 EST 2020. Contains 331177 sequences. (Running on oeis4.)