This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033508 Number of matchings in graph P_{5} X P_{n}. 4
 1, 8, 228, 5096, 120465, 2810694, 65805403, 1539222016, 36012826776, 842518533590, 19711134149599, 461148537211748, 10788744980331535, 252406631116215534, 5905146419664967132, 138153075553825008696 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS These are the row sums of the following triangle of the matchings of P_5 X P_n with k>=0 monomers (A003775 appears in the first column): 1; 0, 3, 0, 4, 0, 1; 8, 0, 56, 0, 94, 0, 56, 0, 13, 0, 1; 0, 106, 0, 757, 0, 1670, 0, 1597, 0, 758, 0, 185, 0, 22, 0, 1; 95, 0, 2111, 0, 12181, 0, 29580, 0, 36771, 0, 25835, 0, 10769, 0, 2696, 0, 395, 0, 31, 0, 1; 0, 2180, 0, 35104, 0, 192672, 0, 510752, 0, 762180, 0, 695848, 0, 407620, 0, 157000, 0, 39979, 0, 6632, 0, 686, 0, 40, 0, 1; 1183, 0, 52614, 0, 611633, 0, 3146447, 0, 8803727, 0, 14957414, 0, 16492039, 0, 12307901, 0, 6380454, 0, 2329148, 0, 600254, 0, 108186, 0, 13295, 0, 1058, 0, 49, 0, 1; 0, 37924, 0, 1054776, 0, 10405842, 0, 51732687, 0, 151233778, 0, 283790459, 0, 361377070, 0, 324069497, 0, 209807278, 0, 99625091, 0, 34985010, 0, 9096697, 0, 1740018, 0, 240905, 0, 23414, 0, 1511, 0, 58, 0, 1; - R. J. Mathar, May 06 2016 LINKS F. Cazals, Monomer-Dimer Tilings, 1997. Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden. Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998. FORMULA For g.f. see Maple program. - Sergey Perepechko, Apr 26 2013 MAPLE # The following g.f. is for the sequence a(0)=1, a(1)=8, a(2)=228, etc. Gf:= (1-6*x-113*x^2+88*x^3+1794*x^4-1994*x^5-6956*x^6+7532*x^7+ 11175*x^8-9448*x^9-9255*x^10+4700*x^11+3820*x^12-870*x^13-654*x^14+ 68*x^15+45*x^16-2*x^17-x^18)/(1-14*x-229*x^2+16*x^3+4757*x^4-898*x^5- 35106*x^6+26564*x^7+74665*x^8-60482*x^9-73623*x^10+50158*x^11+ 38553*x^12-17604*x^13-10366*x^14+2538*x^15+1281*x^16-140*x^17-65*x^18+ 2*x^19+x^20): expr:=convert(series(Gf, x, 21), polynom): seq(coeff(expr, x, j), j=0..20); # Sergey Perepechko, Apr 26 2013 CROSSREFS Column 5 of triangle A210662. Sequence in context: A189445 A193786 A213799 * A240299 A222525 A214351 Adjacent sequences:  A033505 A033506 A033507 * A033509 A033510 A033511 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.