This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033505 Expansion of 1/(1 - 3*x - x^2 + x^3). 8
 1, 3, 10, 32, 103, 331, 1064, 3420, 10993, 35335, 113578, 365076, 1173471, 3771911, 12124128, 38970824, 125264689, 402640763, 1294216154, 4160024536, 13371648999, 42980755379, 138153890600, 444070778180, 1427385469761, 4588073296863, 14747534582170 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 N. J. A. Sloane Notes on A030186 and A033505 Richard M. Low and Ardak Kapbasov, Non-Attacking Bishop and King Positions on Regular and Cylindrical Chessboards, Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.1, Table 4. Index entries for linear recurrences with constant coefficients, signature (3,1,-1). FORMULA a(n) = 3*a(n-1) + a(n-2) - a(n-3). - Greg Dresden, Aug 16 2018 MAPLE seq(coeff(series(1/(1-3*x-x^2+x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 14 2019 MATHEMATICA CoefficientList[Series[1/(1-3x-x^2+x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, 1, -1}, {1, 3, 10}, 30] (* Vincenzo Librandi, Aug 17 2018 *) PROG (MAGMA) I:=[1, 3, 10]; [n le 3 select I[n] else 3*Self(n-1)+Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 17 2018 (PARI) my(x='x+O('x^30)); Vec(1/(1-3*x-x^2+x^3)) \\ G. C. Greubel, Oct 14 2019 (Sage) def A033505_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P(1/(1-3*x-x^2+x^3)).list() A033505_list(30) # G. C. Greubel, Oct 14 2019 (GAP) a:=[1, 3, 10];; for n in [4..30] do a[n]:=3*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, Oct 14 2019 CROSSREFS Partial sums of A030186. Sequence in context: A077826 A292398 A273351 * A297067 A063782 A071718 Adjacent sequences:  A033502 A033503 A033504 * A033506 A033507 A033508 KEYWORD nonn,easy,changed AUTHOR N. J. A. Sloane, Feb 13 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 16:51 EDT 2019. Contains 328120 sequences. (Running on oeis4.)