login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033504 a(n)/4^n is expected number of tosses of a coin required to obtain n heads or n tails. 5
1, 10, 66, 372, 1930, 9516, 45332, 210664, 960858, 4319100, 19188796, 84438360, 368603716, 1598231992, 6889682280, 29551095248, 126193235194, 536799072924, 2275560109868, 9616650989560, 40527780684972, 170368957887656 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The number of rooted two-vertex n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005

REFERENCES

M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 127-129.

V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..172

V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387.

FORMULA

With a different offset: Sum_{j=0..n} Sum_{k=0..n} binomial(n, j)*binomial(n, k)*min(j, k) = n*2^(n-1) + (n/2)*binomial(2*n, n) [see Klamkin]

a(n-1) = b(n, n), where b(n, m) = b(n-1, m)/2+b(n, m-1)/2+1; b(n, 0)=b(0, n)=0

a(n) = sum 2^(2 n - k - l) Binomial(k+l, k), where the sum is from 0 to n for k and l

a(n) = (2n+1)*sum_{0<=i, j<=n}binomial(2n, i+j)/(i+j+1) - Benoit Cloitre, Mar 05 2005

a(n) = (n+1)*(2^(2*n+1)-binomial(2*n+1,n+1)). - Vladeta Jovovic, Aug 23 2007

n*a(n) +6*(-2*n+1)*a(n-1) +48*(n-1)*a(n-2) +32*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Dec 22 2013

PROG

(MAGMA) [(n+1)*(2^(2*n+1)-Binomial(2*n+1, n+1)): n in [0..25]]; // Vincenzo Librandi, Jun 09 2011

CROSSREFS

Cf. A002457, A100511, A103943.

Cf. A000346, A130783.

Sequence in context: A004310 A026853 A177452 * A163615 A232062 A229003

Adjacent sequences:  A033501 A033502 A033503 * A033505 A033506 A033507

KEYWORD

easy,nonn,nice

AUTHOR

Michael Ulm (ulm(AT)mathematik.uni-ulm.de)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 29 08:06 EDT 2015. Contains 261188 sequences.