login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033504 a(n)/4^n is expected number of tosses of a coin required to obtain n heads or n tails. 5
1, 10, 66, 372, 1930, 9516, 45332, 210664, 960858, 4319100, 19188796, 84438360, 368603716, 1598231992, 6889682280, 29551095248, 126193235194, 536799072924, 2275560109868, 9616650989560, 40527780684972, 170368957887656 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The number of rooted two-vertex n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005

REFERENCES

M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 127-129.

V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..172

V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387.

FORMULA

With a different offset: Sum_{j=0..n} Sum_{k=0..n} binomial(n, j)*binomial(n, k)*min(j, k) = n*2^(n-1) + (n/2)*binomial(2*n, n). [see Klamkin]

a(n-1) = b(n, n), where b(n, m) = b(n-1, m)/2+b(n, m-1)/2+1; b(n, 0)=b(0, n)=0.

a(n) = sum 2^(2 n - k - l) Binomial(k+l, k), where the sum is from 0 to n for k and l.

a(n) = (2n+1)*sum_{0<=i, j<=n}binomial(2n, i+j)/(i+j+1). - Benoit Cloitre, Mar 05 2005

a(n) = (n+1)*(2^(2*n+1)-binomial(2*n+1,n+1)). - Vladeta Jovovic, Aug 23 2007

n*a(n) +6*(-2*n+1)*a(n-1) +48*(n-1)*a(n-2) +32*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Dec 22 2013

a(n) ~ 2^(2*n+1)*n. - Ilya Gutkovskiy, Jul 21 2016

MATHEMATICA

a[n_]:=(n+1)*(2^(2*n+1)-Binomial[2*n+1, n+1])

a[#]&/@Range[0, 50] (* Julien Kluge, Jul 21 2016 *)

PROG

(MAGMA) [(n+1)*(2^(2*n+1)-Binomial(2*n+1, n+1)): n in [0..25]]; // Vincenzo Librandi, Jun 09 2011

CROSSREFS

Cf. A002457, A100511, A103943.

Cf. A000346, A130783.

Sequence in context: A004310 A026853 A177452 * A163615 A232062 A229003

Adjacent sequences:  A033501 A033502 A033503 * A033505 A033506 A033507

KEYWORD

easy,nonn,nice

AUTHOR

Michael Ulm (ulm(AT)mathematik.uni-ulm.de)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 13:12 EST 2016. Contains 278678 sequences.