The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033444 Number of edges in 12-partite Turán graph of order n. 12
 0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 77, 89, 102, 116, 131, 147, 164, 182, 201, 221, 242, 264, 286, 309, 333, 358, 384, 411, 439, 468, 498, 529, 561, 594, 627, 661, 696, 732, 769, 807, 846, 886, 927, 969, 1012, 1056, 1100, 1145, 1191, 1238, 1286 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 REFERENCES Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Turán Graph [Reinhard Zumkeller, Nov 30 2009] Wikipedia, Turán graph [Reinhard Zumkeller, Nov 30 2009] Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,0,0,1,-2,1). FORMULA a(n) = Sum_{k=0..n} A168185(k)*(n-k). [Reinhard Zumkeller, Nov 30 2009] G.f.: -x^2*(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)/((x-1)^3*(x+1)*(x^2-x+1)*(x^2+1)*(x^2+x+1)*(x^4-x^2+1)). [Colin Barker, Aug 09 2012] a(n) = Sum_{i=1..n} floor(11*i/12). - Wesley Ivan Hurt, Sep 12 2017 MATHEMATICA CoefficientList[Series[- x^2 (x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/((x - 1)^3 (x + 1) (x^2 - x + 1) (x^2 + 1) (x^2 + x + 1) (x^4 - x^2 + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 20 2013 *) CROSSREFS Cf. A002620, A000212, A033436, A033437, A033438, A033439, A033440, A033441, A033442, A033443. [Reinhard Zumkeller, Nov 30 2009] Sequence in context: A262544 A033443 A130490 * A061791 A268291 A105336 Adjacent sequences:  A033441 A033442 A033443 * A033445 A033446 A033447 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Vincenzo Librandi, Oct 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 02:09 EDT 2020. Contains 336441 sequences. (Running on oeis4.)