login
Number of edges in 6-partite Turán graph of order n.
13

%I #35 Jul 31 2018 08:53:51

%S 0,0,1,3,6,10,15,20,26,33,41,50,60,70,81,93,106,120,135,150,166,183,

%T 201,220,240,260,281,303,326,350,375,400,426,453,481,510,540,570,601,

%U 633,666,700,735,770,806,843,881

%N Number of edges in 6-partite Turán graph of order n.

%C Apart from the initial term this is the elliptic troublemaker sequence R_n(1,6) (also sequence R_n(5,6)) in the notation of Stange (see Table 1, p.16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - _Peter Bala_, Aug 12 2013

%D Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.

%H K. E. Stange, <a href="https://arxiv.org/abs/1108.3051">Integral points on elliptic curves and explicit valuations of division polynomials</a>, arXiv:1108.3051 [math.NT], 2011-2014.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TuranGraph.html">Turán Graph</a> [_Reinhard Zumkeller_, Nov 30 2009]

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Tur%C3%A1n_graph">Turán graph</a> [_Reinhard Zumkeller_, Nov 30 2009]

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,1,-2,1).

%F a(n) = Sum_{k=0..n} A097325(k)*(n-k). - _Reinhard Zumkeller_, Nov 30 2009

%F a(n) = +2*a(n-1) -a(n-2) +a(n-6) -2*a(n-7) +a(n-8).

%F G.f.: -x^2*(1+x+x^3+x^4+x^2) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^3 ).

%F a(n) = floor(5*n^2/12). - _Peter Bala_, Aug 12 2013

%F a(n) = Sum_{i=1..n} floor(5*i/6). - _Wesley Ivan Hurt_, Sep 12 2017

%t a[n_] := Floor[5n^2/12];

%t Table[a[n], {n, 0, 46}] (* _Jean-François Alcover_, Jul 31 2018, after _Peter Bala_ *)

%Y Differs from A025708(n)+1 at 31st position.

%Y Cf. A002620, A000212, A033436, A033437, A033439, A033440, A033441, A033442, A033443, A033444. [From _Reinhard Zumkeller_, Nov 30 2009]

%Y Elliptic troublemaker sequences: A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A184535 (= R_n(2,5) = R_n(3,5)).

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_