

A033323


Configurations of linear chains in a square lattice.


5



0, 0, 0, 0, 32, 128, 344, 1072, 3400, 9832, 27600, 77000, 211736, 572560, 1534512, 4072664, 10725424, 28035128, 72831272
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

From Petros Hadjicostas, Jan 03 2019: (Start)
In the notation of Nemirovsky et al. (1992), a(n), the nth term of the current sequence is C_{n,m} with m=2 (and d=2). Here, for a ddimensional hypercubic lattice, C_{n,m} is "the number of configurations of an nbond selfavoiding chain with m neighbor contacts."
These numbers appear in Table I (p. 1088) in the paper by Nemirovsky et al. (1992).
(End)
The terms a(12) to a(19) were copied from Table B1 (pp. 47384739) in BennettWood et al. (1998). In the table, the authors actually calculate a(n)/4 = C(n, m=2)/4 for 1 <= n <= 29. (They use the notation c_n(k), where k stands for m, which equals 2 here. They call c_n(k) "the number of SAWs of length n with k nearestneighbour contacts".)  Petros Hadjicostas, Jan 04 2019


LINKS

Table of n, a(n) for n=1..19.
D. BennettWood, I. G. Enting, D. S. Gaunt, A. J. Guttmann, J. L. Leask, A. L. Owczarek, and S. G. Whittington, Exact enumeration study of free energies of interacting polygons and walks in two dimensions, J. Phys. A: Math. Gen. 31 (1998), 47254741.
M. E. Fisher and B. J. Hiley, Configuration and free energy of a polymer molecule with solvent interaction, J. Chem. Phys., 34 (1961), 12531267.
A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 10831108; see Eq. 5 (p. 1090) and Eq. 7b (p. 1093).


CROSSREFS

Sequence in context: A247155 A239728 A244082 * A091905 A100626 A231045
Adjacent sequences: A033320 A033321 A033322 * A033324 A033325 A033326


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane.


EXTENSIONS

Name edited and more terms, Petros Hadjicostas, Jan 03 2019


STATUS

approved



