login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033183 a(n) = number of pairs (p,q) such that 4*p + 9*q = n. 6
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,37

COMMENTS

From Reinhard Zumkeller, Nov 07 2009: (Start)

In other words: number of partitions into 4 or 9;

a(n) <= A078134(n); a(A078135(n)) = 0;

a(A167632(n)) = n and a(m) < n for m < A167632(n). (End)

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, -1).

FORMULA

a(n) = [ 7 n/9 ]+1+[ -3 n/4 ].

G.f.: 1/((1-x^4)*(1-x^9)). - Vladeta Jovovic, Nov 12 2004

a(n) = a(n-4) + a(n-9) - a(n-13). - R. J. Mathar, Dec 04 2011

MATHEMATICA

CoefficientList[Series[1/((1-x^4)(1-x^9)), {x, 0, 80}], x] (* or  *) LinearRecurrence[{0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, -1}, {1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1}, 80] (* Harvey P. Dale, Oct 13 2012 *)

CROSSREFS

Cf. A033182.

Sequence in context: A136177 A212178 A066922 * A090677 A161097 A105240

Adjacent sequences:  A033180 A033181 A033182 * A033184 A033185 A033186

KEYWORD

nonn

AUTHOR

Michel Tixier (tixier(AT)dyadel.net)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 25 18:44 EST 2018. Contains 299655 sequences. (Running on oeis4.)