%I
%S 1,1,1,3,1,2,2,2,2,3,2,4,2,2,2,4,2,4,2,4,2,4,1,5,4,3,3,5,2,4,3,5,2,3,
%T 2,6,3,3,4,7,2,5,2,4,4,5,2,5,4,4,3,7,2,5,4,5,4,4,2,9,3,4,4,7,2,5,5,4,
%U 3,6,3,9,4,3,3,6,3,5,2,7,4,5,2,10,5,4,5,8,2,6,3,6,3,6,5,6,5,4,5,8,3,6,3,5
%N Number of multisets of n positive integers with equal sum and product.
%C The multiset {n^1, 2^1, 1^(n2)} has n elements and sum = product = 2n. Hence a(n) >= 1.
%D R. K. Guy, 'Unsolved Problems in Number Theory' (Section D24).
%H David Radcliffe, <a href="/A033178/b033178.txt">Table of n, a(n) for n = 2..10000</a>
%H Onno M. Cain, <a href="https://arxiv.org/abs/1908.03235">Bioperational Multisets in Various Semirings</a>, arXiv:1908.03235 [math.RA], 2019.
%H L. Kurlandchik and A. Nowicki, <a href="https://doi.org/10.2307/3621488">When the sum equals the product</a>, The Mathematical Gazette, 84(499) (2000), 9194. doi:10.2307/3621488.
%Y Cf. A033179, A104173.
%K nonn,changed
%O 2,4
%A _David W. Wilson_
