%I #40 Sep 15 2024 02:16:01
%S 199,409,619,829,1039,1249,1459,1669,1879,2089
%N Longest arithmetic progression of primes with difference 210 and minimal initial term.
%C Since 210 == 1 (mod 11), a progression of primes with difference 210 can't have more than ten terms because there is exactly one multiple of 11 within each run of eleven consecutive terms. For example, 2089 + 210 = 2299 = 11^2 * 19. - _Alonso del Arte_, Dec 22 2017, edited by _M. F. Hasler_, Jan 02 2020
%C After 199, the next prime which starts a CPAP-10 with common gap 210 is 243051733. See A094220 for further starting points. - _M. F. Hasler_, Jan 02 2020
%D Paul Glendinning, Math in Minutes: 200 Key Concepts Explained in an Instant. New York, London: Quercus (2013): pp. 316-317.
%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 143.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/NonRecursions.html">Non Recursions</a>.
%H OEIS wiki, <a href="https://oeis.org/wiki/Primes_in_arithmetic_progression">Primes in arithmetic progression</a>.
%H <a href="/index/Pri#primes_AP">Index entries for sequences related to primes in arithmetic progressions</a>.
%F a(n) = a(0) + n*210 for 0 <= n <= 9. - _M. F. Hasler_, Jan 02 2020
%t 199 + 210*Range[0, 9] (* _Paolo Xausa_, Sep 14 2024 *)
%o (PARI) forprime(p=1,,for(i=1,9,isprime(p+i*210)||next(2)); return([p+d|d<-[0..9]*210])) \\ _M. F. Hasler_, Jan 02 2020
%Y Row 10 of A086786, A113470, A133276, A133277.
%Y Cf. A094220.
%K nonn,fini,full
%O 0,1
%A _Manuel Valdivia_, Apr 22 1998