This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033155 Configurations of linear chains for a square lattice. 9
0, 0, 8, 32, 88, 256, 736, 2032, 5376, 14224, 36976, 95504, 243536, 619168, 1559168, 3916960, 9769072, 24321552, 60199464, 148803824, 366051864 (list; graph; refs; listen; history; text; internal format)



From Petros Hadjicostas, Jan 03 2019: (Start)

In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=1 (and d=2). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts."

These numbers are given in Table I (p. 1088) in the paper by Nemirovsky et al. (1992). Using Eqs. (5) and (7b) in the paper, we can prove that C_{n,m=1} = 2^1*1!*Bin(2,1)*p_{n,m=1}^{(1)} + 2^2*2!*Bin(2,2)*p_{n,m=1}^{(2)} = 0 + 8*p_{n,m=1}^{(2)} = 8*A038747(n).


The terms a(12) to a(21) were copied from Table B1 (pp. 4738-4739) in Bennett-Wood et al. (1998). In the table, the authors actually calculate a(n)/4 = C(n, m=1)/4 for 1 <= n <= 29. (They use the notation c_n(k), where k stands for m, which equals 1 here. They call c_n(k) "the number of SAWs of length n with k nearest-neighbour contacts".) - Petros Hadjicostas, Jan 04 2019


Table of n, a(n) for n=1..21.

D. Bennett-Wood, I. G. Enting, D. S. Gaunt, A. J. Guttmann, J. L. Leask, A. L. Owczarek, and S. G. Whittington, Exact enumeration study of free energies of interacting polygons and walks in two dimensions, J. Phys. A: Math. Gen. 31 (1998), 4725-4741.

M. E. Fisher and B. J. Hiley, Configuration and free energy of a polymer molecule with solvent interaction, J. Chem. Phys., 34 (1961), 1253-1267.

A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108; see Eq. 5 (p. 1090) and Eq. 7b (p. 1093).


a(n) = 8*A038747(n) for n >= 1. (It can be proved using Eqs. (5) and (7b) in the paper by Nemirovsky et al. (1992).) - Petros Hadjicostas, Jan 03 2019


Cf. A038747.

Sequence in context: A018839 A008412 A014819 * A132117 A159941 A053348

Adjacent sequences:  A033152 A033153 A033154 * A033156 A033157 A033158




N. J. A. Sloane.


Name edited by Petros Hadjicostas, Jan 03 2019



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 16:36 EDT 2019. Contains 323395 sequences. (Running on oeis4.)