login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033054 Numbers n such that base 3 representation Sum{d(i)*3^i: i=0,1,...,m} has d(i)=1 for m-i odd. 1
1, 2, 4, 7, 12, 13, 14, 21, 22, 23, 37, 40, 43, 64, 67, 70, 111, 112, 113, 120, 121, 122, 129, 130, 131, 192, 193, 194, 201, 202, 203, 210, 211, 212, 334, 337, 340, 361, 364, 367, 388, 391, 394, 577, 580, 583, 604, 607, 610, 631 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

FORMULA

From Robert Israel, Jun 06 2016: (Start)

a(3n+3) = 9a(n)+4.

If A110654(n) is in A132141 then a(3n+2) = 9a(n)+3 and a(3n+4) = 9a(n)+5

otherwise a(3n+2) = 9a(n)+1 and a(3n+4) = 9a(n)+7.

G.f. satisfies g(x) = 9(x^2+x^3+x^4)g(x^3) + (x+2x^2+4x^3+6x^4-x^5)/(1-x^3) + ((2+2x)/(x+x^2+x^3)) Sum_{k>=1}(x^(2*3^k)-x^(4*3^k)).

(End)

MAPLE

N:= 1000: # to get a(1) to a(N)

K:= ceil((N-4)/3):

Dmax:= ilog[3](ceil(K/2+1)):

A:= Vector(3*K+4):

A[1..4]:= <1, 2, 4, 7>:

for d from 0 to Dmax do

  for k from 2*3^d-1 to min(4*3^d-2, K) do

     A[3*k+2]:= 9*A[k]+3;

     A[3*k+3]:= 9*A[k]+4;

     A[3*k+4]:= 9*A[k]+5

  od:

  for k from 4*3^d-1 to min(2*3^(d+1)-2, K) do

     A[3*k+2]:= 9*A[k]+1;

     A[3*k+3]:= 9*A[k]+4;

     A[3*k+4]:= 9*A[k]+7

  od:

od:

seq(A[i], i=1..N); # Robert Israel, Jun 06 2016

CROSSREFS

Sequence in context: A267699 A193841 A052474 * A266186 A181020 A049631

Adjacent sequences:  A033051 A033052 A033053 * A033055 A033056 A033057

KEYWORD

nonn,base

AUTHOR

Clark Kimberling

EXTENSIONS

Name corrected by Robert Israel, Jun 06 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 22 06:17 EST 2018. Contains 299430 sequences. (Running on oeis4.)