login
Numbers whose base-16 representation Sum_{i=0..m} d(i)*16^(m-i) has even d(i) for all odd i.
1

%I #12 Feb 12 2021 22:37:36

%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,20,22,24,26,28,30,32,34,36,

%T 38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,

%U 84,86,88,90,92,94,96,98,100,102,104,106,108

%N Numbers whose base-16 representation Sum_{i=0..m} d(i)*16^(m-i) has even d(i) for all odd i.

%K nonn,base

%O 1,2

%A _Clark Kimberling_

%E Definition corrected by _Sean A. Irvine_, Nov 17 2020