|
|
A032941
|
|
Numbers whose base-6 representation Sum_{i=0..m} d(i)*6^(m-i) has d(i)=0 for all odd i.
|
|
1
|
|
|
1, 2, 3, 4, 5, 6, 12, 18, 24, 30, 36, 37, 38, 39, 40, 41, 72, 73, 74, 75, 76, 77, 108, 109, 110, 111, 112, 113, 144, 145, 146, 147, 148, 149, 180, 181, 182, 183, 184, 185, 216, 222, 228, 234, 240, 246, 432, 438, 444, 450, 456, 462
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 1..1000
|
|
MAPLE
|
f:= proc(n, j) local L, m;
L:= convert(n, base, 6);
m:= nops(L);
j*add(L[i+1]*6^(2*i), i=0..m-1)
end proc: seq(seq(seq(f(n, j), n=6^k..6^(k+1)-1), j=[1, 6]), k=0..2); # Robert Israel, Nov 16 2020
|
|
MATHEMATICA
|
Join[{1, 2, 3, 4, 5}, Select[Range[500], Union[Take[IntegerDigits[#, 6], {2, -1, 2}]]=={0}&]] (* Harvey P. Dale, Jul 06 2019 *)
|
|
CROSSREFS
|
Cf. A007092 (numbers in base 6).
Sequence in context: A322570 A108320 A177958 * A273733 A218345 A059460
Adjacent sequences: A032938 A032939 A032940 * A032942 A032943 A032944
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Clark Kimberling
|
|
EXTENSIONS
|
Definition corrected by Robert Israel, Nov 16 2020
|
|
STATUS
|
approved
|
|
|
|