login
Arrange digits of primes in ascending order (omitting any that contain 0's), sort list, remove duplicates.
2

%I #15 Jul 19 2015 11:13:17

%S 2,3,5,7,11,13,14,16,17,19,23,29,34,35,37,38,47,59,67,79,89,112,113,

%T 115,118,119,124,125,127,128,133,134,136,137,139,145,146,149,157,166,

%U 167,169,179,188,199,223,227,229,233,235,236,238,239,257,269,277,278,289,299,334,335,337,338,344,346

%N Arrange digits of primes in ascending order (omitting any that contain 0's), sort list, remove duplicates.

%H Michael De Vlieger, <a href="/A032524/b032524.txt">Table of n, a(n) for n = 1..10000</a>

%e From _Michael De Vlieger_, Jul 14 2015: (Start)

%e 16 is a term because it is the result of sorting the digits of prime 61 in ascending order, and 61 contains no zeros.

%e 49 is not a term since neither 49 nor 94 are prime, and the prime 409 contains a zero.

%e 133 is a term because while 133 itself is composite, both 313 and 331 are prime and contain no zeros. (End)

%t Sort@ DeleteDuplicates[FromDigits@ Sort@ IntegerDigits@ # & /@ Select[Prime@ Range@ PrimePi[10^3], Last@ DigitCount@ # == 0 &]] (* _Michael De Vlieger_, Jul 14 2015 *)

%Y Cf. A007933, A034442.

%K nonn,base,easy

%O 1,1

%A _N. J. A. Sloane_

%E More terms from _Erich Friedman_

%E Corrected and extended by _Michael De Vlieger_, Jul 14 2015