%I #27 Jan 19 2020 11:18:56
%S 3,6,8,9,12,13,14,19,22,32,35,37,80,86,102,118,135,159,205,269,430,
%T 435,535,547,830,1020,1030,1079,1089,1112,1189,2244,2397,4497,5888,
%U 9549,15942,16855,19736,21936,26744,26926,36744,51142,53155,53532,67017,116067
%N Numbers k such that 225*2^k+1 is prime.
%H Jeppe Stig Nielsen, <a href="/A032489/b032489.txt">Table of n, a(n) for n = 1..69</a> (terms n = 1..67 from Robert Price)
%H Ray Ballinger, <a href="http://www.prothsearch.com/index.html">Proth Search Page</a>
%H Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1.html">List of primes k.2^n + 1 for k < 300</a>
%H Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k.2^n - 1 for k < 300</a>
%H <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a>
%t Select[Range[1000], PrimeQ[225*2^# + 1] & ] (* _Robert Price_, Dec 19 2018 *)
%o (PARI) is(n)=ispseudoprime(225*2^n+1) \\ _Charles R Greathouse IV_, Jun 13 2017
%K nonn,hard
%O 1,1
%A _N. J. A. Sloane_.
%E a(47)-a(67) from the Ray Ballinger and Wilfrid Keller link by _Robert Price_, Dec 19 2018