%I #33 Jan 19 2020 11:19:40
%S 2,4,6,12,16,20,23,32,38,48,54,60,100,116,118,119,140,150,163,170,190,
%T 244,271,294,299,320,334,414,439,442,468,724,794,842,864,1032,1750,
%U 2050,3980,4010,4756,5096,5963,5966,6836,14160,16748,16844,19814,25398
%N Numbers k such that 177*2^k+1 is prime.
%C The subsequence of prime values starts 2, 23, 163, 271, 439, 798443, ... - _Muniru A Asiru_, Apr 29 2019
%H Jeppe Stig Nielsen, <a href="/A032465/b032465.txt">Table of n, a(n) for n = 1..74</a> (terms n = 1..73 from Robert Price)
%H Ray Ballinger, <a href="http://www.prothsearch.com/index.html">Proth Search Page</a>
%H Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1.html">List of primes k.2^n + 1 for k < 300</a>
%H Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k.2^n - 1 for k < 300</a>
%H <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a>
%p select(k->isprime(177*2^k+1),[$0..1000]); # _Muniru A Asiru_, Dec 18 2018
%t Select[Range[1000], PrimeQ[177*2^# + 1] & ] (* _Robert Price_, Dec 18 2018 *)
%o (PARI) is(n)=ispseudoprime(177*2^n+1) \\ _Charles R Greathouse IV_, Jun 13 2017
%K nonn,hard
%O 1,1
%A _N. J. A. Sloane_.
%E a(51)-a(73) from the Ray Ballinger and Wilfrid Keller link by _Robert Price_, Dec 18 2018