login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A032447 Inverse function of phi( ). 25
1, 2, 3, 4, 6, 5, 8, 10, 12, 7, 9, 14, 18, 15, 16, 20, 24, 30, 11, 22, 13, 21, 26, 28, 36, 42, 17, 32, 34, 40, 48, 60, 19, 27, 38, 54, 25, 33, 44, 50, 66, 23, 46, 35, 39, 45, 52, 56, 70, 72, 78, 84, 90, 29, 58, 31, 62, 51, 64, 68, 80, 96, 102, 120, 37, 57, 63, 74, 76, 108, 114, 126 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Arrange integers in order of increasing phi value; the phi values themselves form A007614.

Inverse of sequence A064275 considered as a permutation of the positive integers. - Howard A. Landman, Sep 25 2001

In the array shown in the example section row no. n gives exactly the N values for which the cyclotomic polynomials cyclotomic(N,x) have degree A002202(n). - Wolfdieter Lang, Feb 19 2012.

REFERENCES

Sivaramakrishnan, The many facets of Euler's Totient, I. Nieuw Arch. Wisk. 4 (1986), 175-190.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000 (Corrected by Dana Jacobsen, Mar 04 2019)

D. Bressoud, CNT.m Computational Number Theory Mathematica package.

H. Gupta, Euler’s totient function and its inverse, Indian J. pure appl. Math., 12(1): 22-29(1981).

Index entries for sequences that are permutations of the natural numbers

EXAMPLE

phi(1)=phi(2)=1, phi(3)=phi(4)=phi(6)=2, phi(5)=phi(8)=...=4, ...

From Wolfdieter Lang, Feb 19 2012: (Start)

Read as array a(n,m) with row length l(n):=A058277(v(n)) with v(n):= A002202(n), n>=1. a(n,m) = m-th element of the set {m from positive integers: phi(m)=v(n)} when read as an increasingly ordered list.

  l(n): 2, 3, 4, 4, 5, 2, 6, 6, 4, 5, ...

   n, v(n)\m 1  2  3  4  5  6  7  8  9  10 11  12  13  14

   1,  1:    1  2

   2,  2:    3  4  6

   3,  4:    5  8 10 12

   4,  6:    7  9 14 18

   5,  8:   15 16 20 24 30

   6, 10:   11 22

   7, 12:   13 21 26 28 36 42

   8, 16:   17 32 34 40 48 60

   9, 18:   19 27 38 54

  10, 20:   25 33 44 50 66

  ...

Row no. n=4: The cyclotomic polynomials cyclotomic(N,x) with values N = 7,9,14, and 18 have degree 6, and only these.

(End)

MATHEMATICA

Needs["CNT`"]; Flatten[Table[PhiInverse[n], {n, 40}]] (* T. D. Noe, Oct 15 2012 *)

Take[Values@ PositionIndex@ Array[EulerPhi, 10^3], 15] // Flatten (* Michael De Vlieger, Dec 29 2017 *)

SortBy[Table[{n, EulerPhi[n]}, {n, 150}], Last][[All, 1]] (* Harvey P. Dale, Oct 11 2019 *)

PROG

(PARI)

M = 9660; /* choose a term of A036913 */

v = vector(M, n, [eulerphi(n), n] );

v = vecsort(v, (x, y)-> if( x[1]-y[1]!=0, sign(x[1]-y[1]), sign(x[2]-y[2]) ) );

P=eulerphi(M);

v = select( x->(x[1]<=P), v );

/* A007614 = vector(#v, n, v[n][1] ) */

A032447 = vector(#v, n, v[n][2] )

/* for (n=1, #v, print(n, " ", A032447[n]) ); */ /* b-file */

/* Joerg Arndt, Oct 06 2012 */

(Haskell)

import Data.List.Ordered (insertBag)

a032447 n = a032447_list !! (n-1)

a032447_list = f [1..] a002110_list [] where

   f xs'@(x:xs) ps'@(p:ps) us

     | x < p = f xs ps' $ insertBag (a000010' x, x) us

     | otherwise = map snd vs ++ f xs' ps ws

     where (vs, ws) = span ((<= a000010' x) . fst) us

-- Reinhard Zumkeller, Nov 22 2015

(Perl) use ntheory ":all"; my($n, $k, $i, @v)=(10000, 1, 0); push @v, inverse_totient($k++) while @v<$n; $#v=$n-1; say ++$i, " $_" for @v; # Dana Jacobsen, Mar 04 2019

CROSSREFS

Cf. A000010, A007614.

Cf. A002110, A064275.

Sequence in context: A118316 A197756 A080738 * A224531 A058213 A080997

Adjacent sequences:  A032444 A032445 A032446 * A032448 A032449 A032450

KEYWORD

nonn,easy,nice,look,changed

AUTHOR

Ursula Gagelmann (gagelmann(AT)altavista.net)

EXTENSIONS

Example corrected, more terms and program from Olivier Gérard, Feb 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 10:15 EDT 2019. Contains 328026 sequences. (Running on oeis4.)