This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032444 a(1) = 1, a(2) = 16, a(n) = lcm(48, 2n^2) for n>2. 0
 1, 16, 144, 96, 1200, 144, 2352, 384, 1296, 1200, 5808, 288, 8112, 2352, 3600, 1536, 13872, 1296, 17328, 2400, 7056, 5808, 25392, 1152, 30000, 8112, 11664, 4704, 40368, 3600, 46128, 6144, 17424, 13872, 58800, 2592, 65712, 17328, 24336, 9600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In the M. Reid reference the following is proved: Let S(n) be the set of all groups whose order is a product of primes congruent to 1 mod n. Then, a(n) = gcd{|G| - |cc(G)| : G in S(n)}, where |cc(G)| is the number of conjugacy classes of G. - Eric M. Schmidt, Apr 18 2013 LINKS M. Reid, The number of conjugacy classes, Amer. Math. Monthly, 105 (1998), 359-361. Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). FORMULA a(n) = 3a(n-12) - 3a(n-24) + a(n-36) for n > 38. - Charles R Greathouse IV, Apr 18 2013 PROG (MAGMA) [1, 16] cat [ LCM(48, 2*n^2) : n in [3..10] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006 (PARI) a(n)=if(n>3, lcm(48, 2*n^2), 15*n-14) \\ Charles R Greathouse IV, Apr 18 2013 CROSSREFS Sequence in context: A048533 A303145 A213349 * A328224 A017114 A092820 Adjacent sequences:  A032441 A032442 A032443 * A032445 A032446 A032447 KEYWORD nonn,easy AUTHOR EXTENSIONS Definition rewritten by Eric M. Schmidt, Apr 18 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 22:47 EDT 2019. Contains 328315 sequences. (Running on oeis4.)