%I
%S 1,1,2,1,1,3,1,1,2,4,3,2,1,2,5,1,1,5,1,4,6,3,1,2,1,3,4,7,1,4,6,3,1,3,
%T 4,8,3,1,1,2,7,1,3,7,9,5,4,5,3,3,8,1,6,4,10,7,2,9,1,9,4,1,4,3,4,11,1,
%U 5,1,1,3,11,5,1,1,3,2,12,3,8,5,6,9,5,4,10,2,1,1,7,13,5,2,9,2,1,12,7,5
%N Triangle of secondtolast man to survive in Josephus problem of n men in a circle with every kth killed, with k<=n.
%D Ball, W. W. R. and Coxeter, H. S.M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 3236, 1987.
%D Kraitchik, M.; "Josephus' Problem", Sec. 3.13 in Mathematical Recreations. New York: W. W. Norton, pp. 9394, 1942.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JosephusProblem.html">Josephus Problem.</a>
%Y Cf. A032434, A032435, A032436.
%K nonn,tabl
%O 2,3
%A _N. J. A. Sloane_.
