This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032358 Number of iterations of phi(n) needed to reach 2. 5
 0, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 3, 4, 4, 5, 3, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 5, 3, 5, 4, 4, 4, 5, 4, 5, 4, 4, 5, 5, 4, 5, 5, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,4 COMMENTS This sequence is additive (but not completely additive). [Charles R Greathouse IV, Oct 28 2011] Shapiro asks for a proof that for every n > 1 there is a prime p such that a(p) = n. [Charles R Greathouse IV, Oct 28 2011] This is A003434(n)-1 for n>1. - N. J. A. Sloane, Sep 02 2017 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 2..10000 P. A. Catlin, Concerning the iterated phi-function, Amer Math. Monthly 77 (1970), pp. 60-61. Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. Paul Erdos, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers] T. D. Noe, Primes in classes of the iterated totient function, JIS 11 (2008) 08.1.2, sequence C(x). Harold Shapiro, An arithmetic function arising from the phi function, Amer. Math. Monthly, Vol. 50, No. 1 (1943), 18-30. FORMULA a(n) = a(phi(n))+1, a(1) = -1. - Vladeta Jovovic, Apr 29 2003 a(n) = A003434(n) - 1 = A049108(n) - 2. From Charles R Greathouse IV, Oct 28 2011:  (Start) Shapiro proves that log_3(n/2) <= a(n) < log_2(n) and also a(mn) = a(m) + a(n) if either m or n is odd and a(mn) = a(m) + a(n) + 1 if m and n are even. (End) MAPLE A032358 := proc(n)     local a, phin ;     if n <=2 then         0;     else         phin := n ;         a := 0 ;         for a from 1 do             phin := numtheory[phi](phin) ;             if phin = 2 then                 return a;             end if;         end do:     end if; end proc: seq(A032358(n), n=1..30) ; # R. J. Mathar, Aug 28 2015 MATHEMATICA Table[Length[NestWhileList[EulerPhi[#]&, n, #>2&]]-1, {n, 3, 80}] (* Harvey P. Dale, May 01 2011 *) PROG (Haskell) a032358 = length . takeWhile (/= 2) . (iterate a000010) -- Reinhard Zumkeller, Oct 27 2011 (PARI) a(n)=my(t); while(n>2, n=eulerphi(n); t++); t \\ Charles R Greathouse IV, Oct 28 2011 CROSSREFS Cf. A000010, A003434. Sequence in context: A176835 A237110 A078704 * A011960 A187035 A008615 Adjacent sequences:  A032355 A032356 A032357 * A032359 A032360 A032361 KEYWORD nice,nonn,easy AUTHOR Ursula Gagelmann (gagelmann(AT)altavista.net) EXTENSIONS a(2) = 0 added and offset adjusted, suggested by David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 15:53 EST 2019. Contains 319307 sequences. (Running on oeis4.)