

A032228


Number of ways to partition n elements into pie slices of different sizes allowing the pie to be turned over.


1



1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 12, 14, 19, 24, 32, 50, 61, 82, 109, 145, 187, 299, 359, 498, 646, 875, 1113, 1502, 2202, 2753, 3688, 4833, 6362, 8234, 10792, 13762, 20059, 24610, 32860, 42074, 55649, 70308, 92341, 116189, 150351, 207101
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..1000
C. G. Bower, Transforms (2)


FORMULA

"DGK" (bracelet, element, unlabeled) transform of 1, 1, 1, 1...


PROG

(PARI) seq(n)={Vec(1 + sum(k=1, n, my(r=(k*(k+1))/2); if(r<=n, if(k>2, (k1)!, 2) * x^r / prod(j=1, k, 1  x^j + O(x*x^(nr)))))/2)} \\ Andrew Howroyd, Sep 20 2018


CROSSREFS

Sequence in context: A173692 A316079 A091585 * A091583 A245438 A245439
Adjacent sequences: A032225 A032226 A032227 * A032229 A032230 A032231


KEYWORD

nonn


AUTHOR

Christian G. Bower


EXTENSIONS

a(0)=1 prepended by Andrew Howroyd, Sep 20 2018


STATUS

approved



