This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032194 Number of necklaces with 9 black beads and n-9 white beads. 2
 1, 1, 5, 19, 55, 143, 335, 715, 1430, 2704, 4862, 8398, 14000, 22610, 35530, 54484, 81719, 120175, 173593, 246675, 345345, 476913, 650325, 876525, 1168710, 1542684, 2017356, 2615104, 3362260, 4289780, 5433736, 6835972 (list; graph; refs; listen; history; text; internal format)
 OFFSET 9,3 COMMENTS The g.f. is Z(C_9,x)/x^9, the 9-variate cycle index polynomial for the cyclic group C_9, with substitution x[i]->1/(1-x^i), i=1,...,9. Therefore by Polya enumeration a(n+9) is the number of cyclically inequivalent 9-necklaces whose 9 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_9,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005 LINKS C. G. Bower, Transforms (2) F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only] FORMULA "CIK[ 9 ]" (necklace, indistinct, unlabeled, 9 parts) transform of 1, 1, 1, 1... G.f.: (x^9)*(1-5*x+14*x^2-18*x^3+21*x^4-21*x^5+25*x^6 -21*x^7 +21*x^8 -18*x^9 +14*x^10 -5*x^11 +x^12) / ((1-x)^6*(1-x^3)^2*(1-x^9)). G.f.: (1/9)*x^9*(1/(1-x)^9+2/(1-x^3)^3+6/(1-x^9)^1). - Herbert Kociemba, Oct 22 2016 MATHEMATICA k = 9; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *) CROSSREFS Column k=9 of A047996. Cf. A004526, A007997, A008610, A008646, A032191, A032192, A032193. Sequence in context: A281156 A060100 A053733 * A024532 A036421 A295776 Adjacent sequences:  A032191 A032192 A032193 * A032195 A032196 A032197 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 19 13:08 EDT 2019. Contains 321330 sequences. (Running on oeis4.)