This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032154 Number of ways to partition n elements into pie slices of different odd sizes. 1
 1, 1, 0, 1, 1, 1, 1, 1, 2, 3, 2, 3, 3, 5, 3, 7, 10, 9, 10, 11, 17, 15, 23, 17, 36, 45, 42, 49, 61, 77, 73, 105, 98, 159, 116, 211, 267, 289, 291, 367, 454, 493, 604, 619, 893, 795, 1175, 969, 1716, 1937, 2124, 2185, 2917, 3225, 3697, 4289, 4862, 6147 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..1000 C. G. Bower, Transforms (2) FORMULA "CGK" (necklace, element, unlabeled) transform of 1, 0, 1, 0, ... (odds). G.f.: 1 + Sum_{k>=1} (k-1)! * x^(k^2) / (Product_{j=1..k} 1-x^(2*j)). - Andrew Howroyd, Sep 13 2018 PROG (PARI) seq(n)=[subst(serlaplace(p/y), y, 1) | p <- Vec(y-1+prod(k=1, ceil(n/2), 1 + x^(2*k-1)*y + O(x*x^n)))] \\ Andrew Howroyd, Sep 13 2018 (PARI) seq(n)={Vec(1 + sum(k=1, sqrtint(n), my(r=k^2); (k-1)! * x^r / prod(j=1, k, 1 - x^(2*j) + O(x*x^(n-r)))))} \\ Andrew Howroyd, Sep 13 2018 CROSSREFS Sequence in context: A031248 A030582 A036762 * A300651 A003051 A305866 Adjacent sequences:  A032151 A032152 A032153 * A032155 A032156 A032157 KEYWORD nonn AUTHOR EXTENSIONS a(0)=1 prepended by Andrew Howroyd, Sep 13 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 15:41 EDT 2019. Contains 328162 sequences. (Running on oeis4.)