NOTES ON STEPHAN'S CONJECTURES 72, 73, AND 74

ELIZABETH WILMER

Recently Stephan [3] posted 117 conjectures based on an extensive analysis of the On-line Encyclopedia of Integer Sequences [1, 2]. Here we give entirely elementary proofs of (slightly corrected forms of) conjectures 72 , 73 , and 74 .

All three of these conjectures concern the number of "non-palindromic reversible strings," although the restrictions on the characters included vary. How should we interpret this phrase? Note that the group $\mathbb{Z} / 2 \mathbb{Z}$ acts on any (reasonable) set of strings by mapping the non-trivial element to reversal of strings:

$$
a_{1} a_{2} \ldots a_{k} \mapsto a_{k} a_{k-1} \ldots a_{1} .
$$

A "non-palindromic reversible string" is an orbit of size two under this action; palindromes, of course, generate orbits of size one.

All three proofs follow an extremely simple outline: first, count both the strings and the palindromes in the set. Then subtract the one result from the other and divide by 2 .
Proposition 1 (Conjecture 72). The number of non-palindromic reversible strings with n beads of 4 possible colors is

$$
\begin{cases}\frac{1}{2}\left(4^{n}-2^{n}\right) & n \text { even } \\ \frac{1}{2}\left(4^{n}-2^{n+1}\right) & n \text { odd } .\end{cases}
$$

Remark. The original conjecture [3] asserts that there should be 4 such strings when $n=1$, when in fact there are none; every one-letter string is a palindrome.
Proof. There are 4^{n} strings total.
When n is even, there are $4^{n / 2}=2^{n}$ palindromes (the first $n / 2$ characters determine the rest of the string).

When n is odd, there are $4^{(n+1) / 2}=2^{n+1}$ palindromes (the center character may be freely chosen, while the first $(n-1) / 2$ characters determine the last ($n-1$)/2 characters).

Proposition 2 (Conjecture 73). The number of non-palindromic reversible strings with $n-1$ beads, of which 4 are black and $n-5$ white, is

$$
\begin{cases}\frac{1}{48}\left(n^{4}-10 n^{3}+32 n^{2}-38 n+15\right) & n \text { odd } \\ \frac{1}{48}\left(n^{4}-10 n^{3}+32 n^{2}-32 n\right) & n \text { even } .\end{cases}
$$

Date: October 15, 2004.

Remark. The formulas for the odd and even cases have been switched from the original conjecture [3].

Proof. There are $\binom{n-1}{4}$ strings total.
When n is odd, $n-1$ is even, and the first $(n-1) / 2$ beads of a palindrome determine the rest of the string. Exactly two of these beads must be black, so there are $\left(\begin{array}{c}(n-1) / 2\end{array}\right)$ palindromes.

When n is even, $n-1$ is odd. The center bead of any such palindrome must be white. The first $(n-2) / 2$ beads determine the rest of the palindrome; of these, exactly two must be black, so there are $\binom{(n-2) / 2}{2}$ palindromes.

Fortunately,

$$
\frac{1}{2}\left(\binom{n-1}{4}-\binom{(n-1) / 2}{2}\right)=\frac{1}{48}\left(n^{4}-10 n^{3}+32 n^{2}-38 n+15\right)
$$

and

$$
\frac{1}{2}\left(\binom{n-1}{4}-\binom{(n-2) / 2}{2}\right)=\frac{1}{48}\left(n^{4}-10 n^{3}+32 n^{2}-32 n\right) .
$$

Proposition 3 (Conjecture 74). The number of non-palindromic reversible strings with n black beads and $n-1$ white beads is

$$
\begin{cases}\frac{1}{4}\left(\binom{2 n}{n}-\binom{n}{n / 2}\right) & n \text { even } \\ \frac{1}{2}\left(\binom{2 n-1}{n-1}-\binom{n-1}{(n-1) / 2}\right) & n \text { odd }\end{cases}
$$

Remark. The original conjecture [3] asserts that there should be 1 such string when $n=1$, when in fact there are none; every one-letter string is a palindrome.

Remark. We have used $\binom{2 n}{n}=2\binom{2 n-1}{n-1}$ to slightly simplify the n odd case of the conjecture.

Proof. First, consider the case where $n=2 k$ is even. Then there are $\binom{4 k-1}{2 k-1}$ strings, in total. Any such palindrome has a white center bead. The first $2 k-1$ beads determine the rest of the string; of those, $k-1$ must be white, so there are $\binom{2 k-1}{k-1}$ palindromes. Fortunately,

$$
\begin{aligned}
\frac{1}{2}\left(\binom{4 k-1}{2 k-1}-\binom{2 k-1}{k-1}\right) & =\frac{1}{4}\left(\frac{4 k}{2 k}\binom{4 k-1}{2 k-1}-\frac{2 k}{k}\binom{2 k-1}{k-1}\right) \\
& =\frac{1}{4}\left(\binom{2 n}{n}-\binom{n}{n / 2}\right) .
\end{aligned}
$$

When $n=2 k+1$ is odd, there are $\binom{4 k+1}{2 k}$ strings in total. The center of each palindrome is now black, and there will be $\binom{2 k}{k}$ palindromes. Fortunately,

$$
\frac{1}{2}\left(\binom{4 k+1}{2 k}-\binom{2 k}{k}\right)=\frac{1}{2}\left(\binom{2 n-1}{n-1}-\binom{n-1}{(n-1) / 2}\right)
$$

References

[1] Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences, published electronically at http://www.research.att.com/ñjas/sequences/, 2004.
[2] Sloane, N. J. A. The on-line encyclopedia of integer sequences. Notices Amer. Math. Soc. 50 (2003), pp. 912-915.
[3] Stephan, Ralf. Prove or Disprove: 100 Conjectures from the OEIS. arXiv:math.CO/0409509

Department of Mathematics, Oberlin College, Oberlin, OH 44074
E-mail address: elizabeth.wilmer@oberlin.edu

